Displaying all 2 publications

Abstract:
Sort:
  1. Haulisah NA, Hassan L, Bejo SK, Jajere SM, Ahmad NI
    Front Vet Sci, 2021;8:652351.
    PMID: 33869326 DOI: 10.3389/fvets.2021.652351
    Overuse of antimicrobials in livestock health and production beyond therapeutic needs has been highlighted in recent years as one of the major risk factors for the acceleration of antimicrobial resistance (AMR) of bacteria in both humans and animals. While there is an abundance of reports on AMR in clinical isolates from humans, information regarding the patterns of resistance in clinical isolates from animals is scarce. Hence, a situational analysis of AMR based on clinical isolates from a veterinary diagnostic laboratory was performed to examine the extent and patterns of resistance demonstrated by isolates from diseased food animals. Between 2015 and 2017, 241 cases of diseased livestock were received. Clinical specimens from ruminants (cattle, goats and sheep), and non-ruminants (pigs and chicken) were received for culture and sensitivity testing. A total of 701 isolates were recovered from these specimens. From ruminants, Escherichia coli (n = 77, 19.3%) predominated, followed by Staphylococcus aureus (n = 73, 18.3%). Antibiotic sensitivity testing (AST) revealed that E. coli resistance was highest for penicillin, streptomycin, and neomycin (77-93%). In addition, S. aureus was highly resistant to neomycin, followed by streptomycin and ampicillin (68-82%). More than 67% of E. coli isolates were multi-drug resistant (MDR) and only 2.6% were susceptible to all the tested antibiotics. Similarly, 65.6% of S. aureus isolates were MDR and only 5.5% were susceptible to all tested antibiotics. From non-ruminants, a total of 301 isolates were recovered. Escherichia coli (n = 108, 35.9%) and Staphylococcus spp. (n = 27, 9%) were the most frequent isolates obtained. For E. coli, the highest resistance was against amoxicillin, erythromycin, tetracycline, and neomycin (95-100%). Staphylococcus spp. had a high level of resistance to streptomycin, trimethoprim/sulfamethoxazole, tetracycline and gentamicin (80-100%). The MDR levels of E. coli and Staphylococcus spp. isolates from non-ruminants were 72.2 and 74.1%, respectively. Significantly higher resistance level were observed among isolates from non-ruminants compared to ruminants for tetracycline, amoxicillin, enrofloxacin, and trimethoprim/sulfamethoxazole.
  2. Haulisah NA, Hassan L, Jajere SM, Ahmad NI, Bejo SK
    PLoS One, 2022;17(12):e0277664.
    PMID: 36477195 DOI: 10.1371/journal.pone.0277664
    Laboratory surveillance and the monitoring of antimicrobial resistance (AMR) trends and patterns among local isolates have been highly effective in providing comprehensive information for public health decision-making. A total of 396 cases along with 449 specimens were received for antibiotic susceptibility testing at a public university veterinary diagnostic laboratory in Malaysia between 2015 and 2017. Escherichia coli was the most frequently isolated (n = 101, 13%) bacteria, followed by Staphylococcus pseudintermedius (n = 97, 12%) and Streptococcus canis (n = 62, 8%). In cats, S. pseudintermedius isolates were highly resistant to azithromycin (90%), while the E. coli isolates were highly resistant to doxycycline (90%), tetracycline (81%), and cephalexin (75%). About 55% of S. pseudintermedius and 82% of E. coli were multi-drug resistant (MDR). In dogs, S. intermedius isolates were highly resistant to aminoglycosides neomycin (90.9%) and gentamicin (84.6%), and tetracycline (75%). Whereas the E. coli isolates were highly resistant to cephalexin (82.1%) and amoxicillin/clavulanic acid (76.5%). MDR was observed in 60% of S. intermedius and 72% of E. coli from dogs. Generally, the bacterial isolates from cats demonstrated higher levels of resistance to multiple antibiotics compared to those from dogs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links