Displaying all 4 publications

Abstract:
Sort:
  1. Hamed MM, Salehie O, Nashwan MS, Shahid S
    Environ Sci Pollut Res Int, 2023 Mar;30(13):38063-38075.
    PMID: 36576621 DOI: 10.1007/s11356-022-24985-4
    Global warming has amplified the frequency of temperature extremes, especially in hot dry countries, which could have serious consequences for the natural and built environments. Egypt is one of the hot desert climate regions that are more susceptible to climate change and associated hazards. This study attempted to project the changes in temperature extremes for three Shared Socioeconomic Pathways (SSPs), namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5 and two future periods (early future: 2020-2059 and late future: 2060-2099) by using daily maximum (Tmax) and minimum temperature (Tmin) of general circulation model (GCMs) of Coupled Model Inter-comparison Project phase 6 (CMIP6). The findings showed that most temperature extreme indices would increase especially by the end of the century. In the late future, the change in the mean Tmin (4.3 °C) was projected to be higher than the mean Tmax (3.7 °C). Annual maximum Tmax, temperature above 95th percentile of Tmax, and the number of hot days above 40 °C and 45 °C were projected to increase in the range 3.0‒5.4 °C, 1.5‒4.8 °C, 20‒95 days, and 10‒52 days, respectively. In contrast, the annual minimum of Tmin, temperature below the 5th percentile, and the annual percentage of cold nights were projected to change in the range of 2.95‒5.0 °C, 1.4‒3.6 °C, and - 0.1‒0.1%, respectively. In all the cases, the lowest changes would be for SSP1-2.6 in the early period and the greatest changes for SSP5-8.5 in the late period. The study indicates that the country is likely to experience a rise in hot extremes and a decline in cold extremes. Therefore, Egypt should take long-term adaptation plans to build social resiliency to rising hot extremes.
  2. Hamed MM, Nashwan MS, Shahid S, Ismail TB, Dewan A, Asaduzzaman M
    Environ Sci Pollut Res Int, 2022 Dec;29(60):91212-91231.
    PMID: 35881284 DOI: 10.1007/s11356-022-22036-6
    Mapping potential changes in bioclimatic characteristics are critical for planning mitigation goals and climate change adaptation. Assessment of such changes is particularly important for Southeast Asia (SEA) - home to global largest ecological diversity. Twenty-three global climate models (GCMs) of Coupled Model Intercomparison Project Phase 6 (CMIP6) were used in this study to evaluate changes in 11 thermal bioclimatic indicators over SEA for two shared socioeconomic pathways (SSPs), 2-4.5 and 5-8.5. Spatial changes in the ensemble mean, 5th, and 95th percentile of each indicator for near (2020-2059) and far (2060-2099) periods were examined in order to understand temporal changes and associated uncertainty. The results indicated large spatial heterogeneity and temporal variability in projected changes of bioclimatic indicators. A higher change was projected for mainland SEA in the far future and less in maritime region during the near future. At the same time, uncertainty in the projected bioclimatic indices was higher for mainland than maritime SEA. Analysis of mean multi-model ensemble revealed a change in mean temperature ranged from - 0.71 to 3.23 °C in near and from 0.00 to 4.07 °C in far futures. The diurnal temperature range was projected to reduce over most of SEA (ranging from - 1.1 to - 2.0 °C), while isothermality is likely to decrease from - 1.1 to - 4.6%. A decrease in isothermality along with narrowing of seasonality indicated a possible shift in climate, particularly in the north of mainland SEA. Maximum temperature in the warmest month/quarter was projected to increase a little more than the coldest month/quarter and the mean temperature in the driest month to increase more than the wettest month. This would cause an increase in the annual temperature range in the future.
  3. Tanimu B, Hamed MM, Bello AD, Abdullahi SA, Ajibike MA, Shahid S
    Environ Sci Pollut Res Int, 2024 Feb;31(10):15986-16010.
    PMID: 38308777 DOI: 10.1007/s11356-024-32128-0
    Choosing a suitable gridded climate dataset is a significant challenge in hydro-climatic research, particularly in areas lacking long-term, reliable, and dense records. This study used the most common method (Perkins skill score (PSS)) with two advanced time series similarity algorithms, short time series distance (STS), and cross-correlation distance (CCD), for the first time to evaluate, compare, and rank five gridded climate datasets, namely, Climate Research Unit (CRU), TERRA Climate (TERRA), Climate Prediction Center (CPC), European Reanalysis V.5 (ERA5), and Climatologies at high resolution for Earth's land surface areas (CHELSA), according to their ability to replicate the in situ rainfall and temperature data in Nigeria. The performance of the methods was evaluated by comparing the ranking obtained using compromise programming (CP) based on four statistical criteria in replicating in situ rainfall, maximum temperature, and minimum temperature at 26 locations distributed over Nigeria. Both methods identified CRU as Nigeria's best-gridded climate dataset, followed by CHELSA, TERRA, ERA5, and CPC. The integrated STS values using the group decision-making method for CRU rainfall, maximum and minimum temperatures were 17, 10.1, and 20.8, respectively, while CDD values for those variables were 17.7, 11, and 12.2, respectively. The CP based on conventional statistical metrics supported the results obtained using STS and CCD. CRU's Pbias was between 0.5 and 1; KGE ranged from 0.5 to 0.9; NSE ranged from 0.3 to 0.8; and NRMSE between - 30 and 68.2, which were much better than the other products. The findings establish STS and CCD's ability to evaluate the performance of climate data by avoiding the complex and time-consuming multi-criteria decision algorithms based on multiple statistical metrics.
  4. Muhammad MKI, Hamed MM, Harun S, Sa'adi Z, Sammen SS, Al-Ansari N, et al.
    Sci Rep, 2024 Feb 21;14(1):4255.
    PMID: 38383678 DOI: 10.1038/s41598-024-53960-x
    One of the direct and unavoidable consequences of global warming-induced rising temperatures is the more recurrent and severe heatwaves. In recent years, even countries like Malaysia seldom had some mild to severe heatwaves. As the Earth's average temperature continues to rise, heatwaves in Malaysia will undoubtedly worsen in the future. It is crucial to characterize and monitor heat events across time to effectively prepare for and implement preventative actions to lessen heatwave's social and economic effects. This study proposes heatwave-related indices that take into account both daily maximum (Tmax) and daily lowest (Tmin) temperatures to evaluate shifts in heatwave features in Peninsular Malaysia (PM). Daily ERA5 temperature dataset with a geographical resolution of 0.25° for the period 1950-2022 was used to analyze the changes in the frequency and severity of heat waves across PM, while the LandScan gridded population data from 2000 to 2020 was used to calculate the affected population to the heatwaves. This study also utilized Sen's slope for trend analysis of heatwave characteristics, which separates multi-decadal oscillatory fluctuations from secular trends. The findings demonstrated that the geographical pattern of heatwaves in PM could be reconstructed if daily Tmax is more than the 95th percentile for 3 or more days. The data indicated that the southwest was more prone to severe heatwaves. The PM experienced more heatwaves after 2000 than before. Overall, the heatwave-affected area in PM has increased by 8.98 km2/decade and its duration by 1.54 days/decade. The highest population affected was located in the central south region of PM. These findings provide valuable insights into the heatwaves pattern and impact.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links