Displaying all 4 publications

Abstract:
Sort:
  1. Halim NHA, Zakaria N, Satar NA, Yahaya BH
    Methods Mol Biol, 2016;1516:371-388.
    PMID: 27032945 DOI: 10.1007/7651_2016_326
    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.
  2. Shafaei A, Halim NHA, Zakaria N, Ismail Z
    Pharmacogn Mag, 2017 Oct;13(Suppl 3):S385-S391.
    PMID: 29142388 DOI: 10.4103/0973-1296.216337
    Background: Orthosiphon stamineus (OS) Benth is a medicinal plant and native in Southeast Asia. Previous studies have shown that OS leaves possess antioxidant, cytotoxic, diuretic, antihypertensive, and uricosuric effects. These beneficial effects have been attributed to the presence of primary and secondary metabolites such as polyphenols, amino acids, and flavonoids.

    Objective: To develop and validate an high-performance liquid chromatography (HPLC)-diode array detector (DAD) method combined with solid-phase extraction that involves precolumn derivatization with O-phthaladehyde for simultaneous analysis of free amino acids in OS leaves extracts.

    Materials and Methods: OS leaves were extracted with water (OS-W), ethanol (OS-E), methanol (OS-M), 50% ethanol (OS-EW), and 50% methanol (OS-MW). The extracts were treated by C18 cartridge before derivatization, resulting in great improvement of separation by Zorbox Eclipse XDB-C18 column.

    Results: The HPLC-DAD method was successfully developed and validated for analyzing the contents of free amino acids in OS extracts. The results showed that l-aspartic acid with 0.93 ± 0.01 nmol/mg was the major free amino acid in OS-W extract. However, in OS-E, OS-M, OS-EW, and OS-MW, l-glutamic acid with 3.53 ± 0.16, 2.17 ± 0.10, 4.01 ± 0.12, and 2.49 ± 0.12 nmol/mg, respectively, was the major free amino acid. Subsequently, l-serine, which was detected in OS-W, OS-E, and OS-M, was the minor free amino acid with 0.33 ± 0.02, 0.12 ± 0.01, and 0.06 ± 0.01 nmol/mg, respectively. However, l-threonine with 0.26 ± 0.02 and 0.19 ± 0.08 nmol/mL in OS-EW and OS-MW, respectively, had the lowest concentration compared with other amino acid components.

    Conclusion: All validation parameters of the developed method indicate that the method is reliable and efficient to simultaneously determine the free amino acids content for routine analysis of OS extracts.

    SUMMARY: The HPLC-DAD method combined with solid phase extraction was successfully developed and validated for simultaneous determination and quantification of 17 free amino acids in Orthosiphon stamineus (OS) Benth extractsOS extracts were found to be rich in free amino acid contentL-aspartic acid was the major free amino acid in OS water extract while, in OS ethanol, methanol, 50% ethanol and 50% methanol extracts, L-glutamic acid was the major free amino acidL-serine was the minor free amino acid in OS water, ethanol and methanol extracts while, in OS 50% ethanol and 50% methanol extracts, L-threonine had the lowest concentration compared to other amino acid components. Abbreviations used: HPLC-DAD: High-Performance Liquid Chromatography with Diode-Array Detection, OS: Orthosiphon stamineus, OS-W: Orthosiphon stamineus water extract, OS-E: Orthosiphon stamineus ethanol extract, OS-M: Orthosiphon stamineus methanol extract, OS-EW: Orthosiphon stamineus 50% ethanol extract, OS-MW: Orthosiphon stamineus 50% methanol extract, OPA: O-phthaladehyde, SPE: Solid Phase Extraction, UV: Ultraviolet, LOD: Limit of Detection, LOQ: Limit of Quantification, RSD: Relative Standard Deviation.

  3. Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126745.
    PMID: 37689297 DOI: 10.1016/j.ijbiomac.2023.126745
    Genosensor-based electrodes mediated with nanoparticles (NPs) have tremendously developed in medical diagnosis. Herein, we report a facile, rapid, low cost and highly sensitive biosensing strategy for early detection of HPV 18 using gold-nanoparticles (AuNPs) deposited on micro-IDEs. This study represents surface charge transduction of micro-interdigitated electrodes (micro-IDE) alumina insulated with silica, independent and mini genosensor modified with colloidal gold NPs (AuNPs), and determination of gene hybridization for early detection of cervical cancer. The surface of AuNPs deposited micro-IDE functionalized with optimized 3-aminopropyl-triethoxysilane (APTES) followed by hybridization with deoxyribonucleic acid (DNA) virus to develop DNA genosensor. The results of ssDNA hybridization with the ssDNA target of human papillomavirus (HPV) 18 have affirmed that micro-IDE functionalized with colloidal AuNPs resulted in the lowest detection at 0.529 aM. Based on coefficient regression, micro-IDE functionalized with AuNPs produces better results in the sensitivity test (R2 = 0.99793) than unfunctionalized micro-IDE.
  4. Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, et al.
    PMID: 34554606 DOI: 10.1002/bab.2260
    The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5' COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3', while 5'COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3' as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links