Displaying all 3 publications

Abstract:
Sort:
  1. Gorajana A, Ying CC, Shuang Y, Fong P, Tan Z, Gupta J, et al.
    Curr Drug Deliv, 2013 Jun;10(3):309-16.
    PMID: 23360246
    Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.
  2. Mariam S, Hasan S, Shinde M, Gupta J, Buch SA, Rajpurohit KS, et al.
    Cureus, 2024 Jun;16(6):e61697.
    PMID: 38975478 DOI: 10.7759/cureus.61697
    In the early 20th century, numerous in-vitro studies, animal studies, epidemiological studies, and human trials have attempted to demonstrate the interrelationship between pregnancy outcomes and maternal periodontal disease. This review aims to shed light on the unexplored connections between pregnancy outcomes and maternal periodontal diseases. A literature search was conducted using electronic databases such as PubMed, Scopus, Google Scholar, Web of Science, and Embase. Our research focuses on the role of epigenetics, maternal vitamin D status, stress levels, genetic factors, innate immunity, pattern recognition receptors, and any potential paternal influence, and their possible connections to maternal periodontal disease. Although the precise etiologies and pathogenic mechanisms of the adverse pregnancy outcomes remain obscure, substantial affirmation of the inter-relationship between maternal periodontal diseases and adverse pregnancy outcomes may prove to be of public health relevance as periodontitis can certainly be prevented and treated. Maternal periodontal disease may augment the probability of jeopardizing maternal health causing adverse effects on the pregnancy and neonatal morbidity. Hence, emphasis should be placed on an early diagnosis and management of periodontal diseases. Routine oral health evaluation during prenatal care should be encouraged to combat complications. Ensuing endeavors should be undertaken to help find plausible mechanisms keeping in view the future research domains and new pathways.
  3. Gholap AD, Gupta J, Kamandar P, Bhowmik DD, Rojekar S, Faiyazuddin M, et al.
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):271-297.
    PMID: 38096426 DOI: 10.1021/acsbiomaterials.3c01247
    Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links