Displaying all 3 publications

Abstract:
Sort:
  1. Dong HC, Lundholm N, Teng ST, Li A, Wang C, Hu Y, et al.
    Harmful Algae, 2020 09;98:101899.
    PMID: 33129456 DOI: 10.1016/j.hal.2020.101899
    The diatom genus Pseudo-nitzschia, which has been associated with amnesic shellfish poisoning events globally, is also one of the key harmful microalga groups in Guangdong coastal waters, off the north coast of the South China Sea. In order to explore the diversity and toxigenic characteristics, Pseudo-nitzschia isolates were established. Based on a combination of morphological and molecular features, in total 26 different Pseudo-nitzschia taxa were identified, including two new species, P. uniseriata H.C. Dong & Yang Li and P. yuensis H.C. Dong & Yang Li. Morphologically, P. uniseriata is unique by having striae mainly comprising one row of poroids, which are simple without divided hymen internally, and each poroid containing one, seldom two sectors. Pseudo-nitzschia yuensis is characterized by having striae comprising one to two rows of poroids. In biseriate striae, the poroids are polygonal and irregularly distributed, and a discontinuous row of poroids may be present in the middle. In uniseriate striae, the poroids usually contain 1-5 sectors. Both taxa are well differentiated from other Pseudo-nitzschia species in phylogenetic analyses inferred from ITS2 sequence-structure information. Pseudo-nitzschia uniseriata is sister to P. lineola, whereas P. yuensis forms a group together with P. micropora and P. delicatissima. When comparing ITS2 secondary structure, two hemi-compensatory base change (HCBCs) are found between P. uniseriata and P. lineola. One compensatory base change (CBC) and four HCBCs are found between P. yuensis and P. delicatissima, and there is one CBC and five HCBCs between P. yuensis and P. micropora. The ability of cultured strains to produce particulate DA (pDA) revealed production of pDA in twenty-nine strains belonging to seven species: P. bipertita, P. caciantha, P. cuspidata, P. fraudulenta, P. fukuyoi, P. lundholmiae and P. multiseries. This is the first report of P. bipertita being toxic, with pDA content of 15.6 ± 2.1 fg cell-1. The presence of brine shrimps significantly increased pDA content in P. cuspidata, P. fukuyoi, P. lundholmiae and P. multiseries 1.4 to 7 times, and induced pDA production in P. fraudulenta from below detection limit to 17.5 ± 1.6 fg cell-1. The highest pDA concentration, 4830.5 ± 120.3 fg cell-1, was detected in P. multiseries, a level much lower than previous reports on P. multiseries from North America and Europe. Overall, the cellular toxin levels in Pseudo-nitzschia spp. were low in Guangdong coastal isolates.
  2. Li Y, Dong HC, Teng ST, Bates SS, Lim PT
    J Phycol, 2018 12;54(6):918-922.
    PMID: 30270437 DOI: 10.1111/jpy.12791
    Pseudo-nitzschia nanaoensis sp. nov. is described from waters around Nan'ao Island (South China Sea), using morphological data and molecular evidence. This species is morphologically most similar to P. brasiliana, but differs by a denser arrangement of fibulae, interstriae, and poroids, as well as by the structure of the valvocopula and the narrow second band. Pseudo-nitzschia nanaoensis constitutes a monophyletic lineage and is well differentiated from other species on the LSU and ITS2 sequence-structure trees. Pseudo-nitzschia nanaoensis makes up the basal node on the LSU tree, and forms a sister clade with a group of P. pungens and P. multiseries on the ITS2 tree. The ability of cultured strains to produce domoic acid was assessed, including its possible induction by the presence of a copepod and brine shrimp, by liquid chromatography-tandem mass spectrometry. However, no strains showed detectable domoic acid.
  3. Huang CX, Dong HC, Lundholm N, Teng ST, Zheng GC, Tan ZJ, et al.
    Harmful Algae, 2019 Apr;84:195-209.
    PMID: 31128805 DOI: 10.1016/j.hal.2019.04.003
    In a field survey in the Taiwan Strait during April 2016, the species composition and the domoic acid production of the diatom genus Pseudo-nitzschia were investigated. A total of 80 strains of Pseudo-nitzschia were established, and species identification was determined based on a combination of morphological and molecular data. Fourteen taxa were recognized, i.e., P. americana, P. brasiliana, P. calliantha, P. cuspidata, P. galaxiae, P. lundholmiae, P. multiseries, P. multistriata, P. pseudodelicatissima, P. pungens var. aveirensis, P. pungenus var. pungens and P. sabit, as well as two novel species P. chiniana C.X. Huang & Yang Li and P. qiana C.X. Huang & Yang Li. Morphologically, P. chiniana is characterized by striae comprising one or two rows of poroids, and valve ends that are normally dominated by two rows of poroids within each stria. Whereas P. qiana is unique by having a narrow valve width (1.3-1.5 μm) and sharply pointed valve ends. Both taxa constitute their own monophyletic lineage in the phylogenetic analyses inferred from LSU and ITS2 rDNA, and are well differentiated from other Pseudo-nitzschia species. Pseudo-nitzschia chiniana forms a group with P. abrensis and P. batesiana in LSU and ITS trees, whereas P. qiana is sister to P. lineola. When comparing ITS2 secondary structure, five CBCs and seven HCBCs are recognized between P. chiniana and P. abrensis, and four CBCs and ten HCBCs between P. chiniana and P. batesiana. Two CBCs and eight HCBCs are found between P. qiana with P. lineola. The ability of the strains to produce domoic acid was assessed, including a potential toxin induction by the presence of brine shrimps. Results revealed production of domoic acid in six strains belonging to three species. Without presence of brine shrimps, cellular DA (pDA) was detected in four P. multiseries strains (1.6 ± 0.3, 26.6 ± 2.7, 68.3 ± 4.2 and 56.9 ± 4.7 fg cell-1, separately), one strain of P. pseudodelicatissima (0.8 ± 0.2 fg cell-1) and one strain of P. lundholmiae (2.5 ± 0.4 fg cell-1). In the presence of brine shrimps, pDA contents increased significantly (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links