Displaying all 2 publications

Abstract:
Sort:
  1. Jamil K, Zacharin M, Foster B, Donald G, Hassall T, Siafarikas A, et al.
    BMJ Paediatr Open, 2017;1(1):e000084.
    PMID: 29637122 DOI: 10.1136/bmjpo-2017-000084
    Introduction: Perthes disease (PD) is an idiopathic disorder presenting with avascular necrosis to the femoral head, which frequently results in flattening. Long-term function is directly related to the subsequent femoral head sphericity. Current treatment includes mechanical modalities and surgical procedures, which are therapeutic but are not uniformly able to prevent collapse. The use of the nitrogen-containing bisphosphonate zoledronic acid (ZA) to inhibit osteoclastic bone resorption is aimed at preserving femoral head strength, reducing collapse and thus maintaining shape. The proposed multicentre, prospective, randomised controlled trial intends to evaluate the efficacy of ZA treatment in PD.

    Methods and analysis: An open-label randomised control trial recruiting 100 children (50 each treatment arm) 5 to 16 years old with unilateral PD. Subjects are randomly assigned to either (a) ZA and standard care or (b) Standard care. The primary outcome measure is deformity index (DI), a radiographic parameter of femoral head roundness assessed at 24 months, following 12 months of ZA treatment (3-monthly doses of ZA 0.025 mg/kg at baseline, 3, 6, 9 and 12 months) plus 12 months observation (group A) or 24 months of observation (group B). Secondary outcome measures are femoral head subluxation, Faces Pain scale, Harris hip score and quality of life. Assessments are made at baseline, 3 monthly during the first year of follow-up and then 6 monthly, until the 24th month.

    Ethics and dissemination: The study commenced following the written approval from the Human Research Ethics Committee. Safety considerations regarding the effects of ZA are monitored which include the subject's symptomatology, mineral status, bone mass and turnover activity, and metaphyseal modelling. Data handling plan requires that all documents, clinical information, biological samples and investigation results will be held in strict confidence by study investigators to preserve its safety and confidentiality.

    Trial registration number: Australian and New Zealand Clinical Trials ACTRN12610000407099, pre-results.

  2. Shepherdson JL, Hutchison K, Don DW, McGillivray G, Choi TI, Allan CA, et al.
    Am J Hum Genet, 2024 Mar 07;111(3):487-508.
    PMID: 38325380 DOI: 10.1016/j.ajhg.2024.01.007
    Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links