Displaying all 8 publications

Abstract:
Sort:
  1. Dianita R, Jantan I
    Molecules, 2019 Apr 13;24(8).
    PMID: 31013947 DOI: 10.3390/molecules24081469
    Many Premna species have been used in traditional medicine to treat hypertension and cardiac insufficiency, and as a tonic for cardiac-related problems. Some have been reported to possess cardiovascular protective activity through several possible mechanisms, but not Premna foetida. In the present study, the methanol extract of P. foetida leaves (PFM) and its isolated compounds were evaluated for their ability to inhibit copper-mediated human low-density lipoprotein (LDL) oxidation and arachidonic acid (AA)- and adenosine diphosphate (ADP)-induced platelet aggregation. Six flavonoids, three triterpenoids, vanillic acid and stigmasterol were successfully isolated from PFM. Of the isolated compounds, quercetin was the most active against LDL oxidation (IC50 4.25 µM). The flavonols were more active than the flavones against LDL oxidation, suggesting that hydroxyl group at C-3 and the catechol moiety at B-ring may play important roles in protecting LDL from oxidation. Most tested flavonoids showed stronger inhibition towards AA-induced than the ADP-induced platelet aggregation with apigenin exhibiting the strongest effect (IC50 52.3 and 127.4 µM, respectively) while quercetin and kaempferol showed moderate activity. The results suggested that flavonoids, especially quercetin, apigenin and kaempferol were among the major constituents of P. foetida responsible for anti-LDL oxidation and anti-platelet aggregation.
  2. Dianita R, Jantan I
    Pharm Biol, 2017 Dec;55(1):1715-1739.
    PMID: 28486830 DOI: 10.1080/13880209.2017.1323225
    CONTEXT: The genus Premna (Lamiaceae), distributed throughout tropical and subtropical Asia, Africa, Australia and the Pacific Islands, is used in folk medicine primarily to treat inflammation, immune-related diseases, stomach disorders, wound healing, and skin diseases.

    OBJECTIVES: This review exhaustively gathers available information on ethnopharmacological uses, phytochemistry, and bioactivity studies on more than 20 species of Premna and critically analyzes the reports to provide the perspectives and directions for future research for the plants as potential source of drug leads and pharmaceutical agents.

    METHODS: A literature search was performed on Premna species based on books of herbal medicine, major scientific databases including Chemical Abstract, Pubmed, SciFinder, Springerlink, Science Direct, Scopus, the Web of Science, Google Scholar, and ethnobotanical databases.

    RESULTS: More than 250 compounds have been isolated and identified from Premna species, comprising of diterpenoids, iridoid glycosides, and flavonoids as the most common secondary metabolites, followed by sesquiterpenes, lignans, phenylethanoids, megastigmanes, glyceroglycolipids, and ceramides. Many in vitro and in vivo studies have been conducted to evaluate the biological and pharmacological properties of the extracts, and isolated compounds of Premna species with antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antihyperglycaemia, and cytotoxic activities.

    CONCLUSION: The bioactive compounds responsible for the bioactivities of most plants have not been well identified as the reported in vivo pharmacological studies were mostly carried out on the crude extracts. The isolated bioactive components should also be further subjected to more preclinical studies and elaborate toxicity study before clinical trials can be pursued.

  3. Dianita R, Jantan I, Jalil J, Amran AZ
    Phytomedicine, 2016 Jul 15;23(8):810-7.
    PMID: 27288916 DOI: 10.1016/j.phymed.2016.04.004
    BACKGROUND: Previous studies on Labisia pumila var. alata (LPva) have showed that it could inhibit low-density lipoprotein (LDL) oxidation and provide protection on myocardial infarction in rats.

    HYPOTHESIS/PURPOSE: We hypothesized that LPva extracts can modulate the lipid profiles and serum antioxidant status of hypercholesterolemic rats. In the present study, we investigated the effects of aqueous and 80% ethanol extracts of LPva on atherogenic and serum antioxidant parameters as well as changes in abdominal aorta of high-cholesterol diet rats.

    METHODS: The major components of the extracts, gallic acid, flavonoids and alkyl resorcinols were analyzed by using a validated reversed phase HPLC method. The rats were induced to hypercholesterolemic status with daily intake of 2% cholesterol for a duration of 8 weeks. Three different doses (100, 200 and 400mg/kg) of the extracts were administered daily on the 4th week onwards. The rats were then sacrificed and the blood was collected via abdominal aorta and serum was separated by centrifugation for biochemical analysis. Part of the aorta tissues were excised immediately for histopathological examination.

    RESULTS: The serum of LPva treated rats showed significant reduction in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels and the abdominal aorta showed a significant decrease of atheroma lesions in treated rats. Serum lipid profiles of treated rats showed a decrease in total cholesterol, total triglycerides and low-density lipoprotein (LDL) levels as compared to control group. The atherogenic indices in treated rats were significantly improved along with an increasing level of serum high-density lipoprotein (HDL). The extracts also exhibited significant increase of antioxidant enzymes and decrease of MDA as a product of lipid peroxidation.

    CONCLUSION: LPva extracts can reduce the risk of dyslipidemia by improving the serum lipid profiles and modulating serum antioxidants.

  4. Dianita R, Jantan I, Amran AZ, Jalil J
    Molecules, 2015 Mar 16;20(3):4746-63.
    PMID: 25786162 DOI: 10.3390/molecules20034746
    The study was designed to evaluate the cardioprotective effects of the standardized aqueous and 80% ethanol extracts of Labisia pumila var. alata (LPva) in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. The extracts were administered to Wistar rats orally for 28 days with three doses (100, 200 and 400 mg/kg of body weight) prior to ISO (85 mg/kg)-induced MI in two doses on day 29 and 30. The sera and hearts were collected for biochemical and histopathological analysis after the rats were sacrificed 48 h after the first induction. The main components of the extracts, gallic acid, alkylresorcinols and flavonoids were identified and quantitatively analyzed in the extracts by using a validated reversed phase HPLC method. The extracts showed significant protective effects as pretreated rats showed a significant dose-dependent decrease (p < 0.05) in cardiac enzyme activities, i.e., cardiac troponin I (cTnI), creatine kinase MB isoenzyme (CK-MB), lactate dehydrogenase (LDH), alanine transaminase (ALT) and aspartate transaminase (AST), when compared with ISO-control rats. There were significant rises (p < 0.05) in the activity of oxidase enzymes, i.e., glutathione peroxide (GPx), catalase (CAT) and superoxide dismutase (SOD) of the pretreated rats, when compared with ISO-control group. Histopathological examination showed an improvement in membrane cell integrity in pre-treated rats compared to untreated rats. The major components of LPva extracts can be used as their biomarkers and contributed to the cardioprotective effects against ISO-induced MI rats.
  5. Amran AZ, Jantan I, Dianita R, Buang F
    Pharm Biol, 2015;53(12):1795-802.
    PMID: 25868620 DOI: 10.3109/13880209.2015.1008147
    CONTEXT: Ginger [Zingiber officinale Roscoe. (Zingiberaceae)] has been universally used as a spice as well as for its health benefits.

    OBJECTIVE: The present study evaluates the protective effect of the standardized extract of ginger against isoproterenol (ISO)-induced myocardial infarction (MI) in rats.

    MATERIALS AND METHODS: Wistar rats were pretreated orally with three doses of standardized ginger extract (100, 200, and 400 mg/kg of body weight) or propranolol (5 mg/mL) for 28 d prior to ISO (85 mg/kg) induced MI in two doses on days 29 and 30. The rats were sacrificed 48 h after the first induction; serum and hearts were collected for biochemical and histopathological analysis.

    RESULTS: Gingerols and shogaols were identified and quantitatively analyzed in the extracts using validated reversed phase HPLC methods. Pretreatment with ginger extract at 400 mg/kg showed a significant decrease (p 

  6. Azman NAN, Alhawarri MB, Rawa MSA, Dianita R, Gazzali AM, Nogawa T, et al.
    Molecules, 2020 Oct 04;25(19).
    PMID: 33020403 DOI: 10.3390/molecules25194545
    Seventeen methanol extracts from different plant parts of five different Cassia species, including C. timorensis, C. grandis, C. fistula, C. spectabilis, and C. alata were screened against acetylcholinesterase (AChE). C. timorensis extracts were found to exhibit the highest inhibition towards AChE whereby the leaf, stem, and flower methanol extracts showed 94-97% inhibition. As far as we are aware, C. timorensis is one of the least explored Cassia spp. for bioactivity. Further fractionation led to the identification of six compounds, isolated for the first time from C. timorensis: 3-methoxyquercetin (1), benzenepropanoic acid (2), 9,12,15-octadecatrienoic acid (3), β-sitosterol (4), stigmasterol (5), and 1-octadecanol (6). Compound 1 showed moderate inhibition towards AChE (IC50: 83.71 μM), while the other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that the methoxy substitution of 1 formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS) and the hydroxyl group at C5 formed a covalent hydrogen bond with ASP72. Additionally, the OH group at the C3' position formed an interaction with the protein at the acyl pocket (PHE288). This possibly explains the activity of 1 in blocking the entry of acetylcholine (ACh, the neurotransmitter), thus impeding the hydrolysis of ACh.
  7. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
  8. Tan SM, Abou Assi R, Dianita R, Murugaiyah V, Chan SY
    Drug Dev Ind Pharm, 2024 May 09.
    PMID: 38530403 DOI: 10.1080/03639045.2024.2335527
    Objective: This research aimed to investigate the application of the coaxial electrospun method for the production of natural extracts (papaya leaf extract) fibre films. This was achieved through utilising different polymers and with a focus on the conductivity and the viscosity of polymer solutions as critical parameters to generate successful fibres.Significance: Electrospinning is a promising trending manufacturing method for incorporating thermolabile herbal extracts using coaxial electrospun features. However, the complexity of the electrospinning process and the feasibility of the product required precise scrutiny.Methods: The electrospinning solution parameters (conductivity and viscosity) were evaluated by employing various ratios of Eudragit L100 (EL100) and Eudragit L100-55 (EL100-55) pre-spinning polymeric blend solutions. The electrospinning process and ambient parameters were optimised. Following that, the in-silico physicochemical properties of phytochemical marker, rutin, were illustrated using SwissADME web tool. Both freeze-dried Carica papaya leaf extract and its produced films were characterised using Scanning Electron Microscopy (SEM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarised light microscopy, and X-ray Powder Diffraction (XRPD).Results: The optimal values of conductivity (≈40-44 × 10-4 S/m) and viscosity (≈32-42 × 10-3 Pa·s) were determined for producing evenly distributed and small fibre diameters in SEM images. These parameters significance was highlighted in acquiring and maintaining adequate tangential stress for fibre elongation, which would consequently affect the morphology and diameter of the fibres formed.Conclusion: In conclusion, the solution, process, and ambient parameters are significant in developing natural extracts into films via electrospinning technology, and this includes the promising Carica papaya leaf extract films produced by coaxial electrospinning.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links