Displaying all 4 publications

Abstract:
Sort:
  1. Wee SL, Clarke AR
    Sci Rep, 2020 09 14;10(1):15004.
    PMID: 32929156 DOI: 10.1038/s41598-020-72209-x
    Males of certain Dacini fruit flies are strongly attracted to, and feed upon, plant secondary compounds such as methyl eugenol, raspberry ketone and zingerone. The consumed lure is generally found to induce physiological and behavioural changes that enhance the mating performance of lure-fed males. Male Bactrocera jarvisi respond strongly to zingerone from a young age, but only weakly respond to raspberry ketone. We hypothesized that this selective lure-response would be reflected in the physiological importance of the lure to the fly. We found that zingerone feeding by young males resulted in significantly greater mating success in competitive mating trials with lure-deprived flies, but the mating advantage was lost in older males. Lure dosage had a significant effect on the duration of the mating advantage, for example when fed 20 µg of zingerone, the advantage lasted only 1 day post-feeding, but when fed of 50 µg zingerone the advantage lasted 7 days. Raspberry ketone feeding did not confer any mating advantage to males except at one dosage (50 µg) for 1 day after feeding. When given a choice, B. jarvisi females preferred to mate with zingerone-fed versus to raspberry ketone-fed males. This study revealed lure, dosage and age of fly at time of lure administration are all important factors for maximising lure-enhanced fruit fly mating performance. These findings contribute to a better theoretical understanding of the evolution of fruit fly-lure interactions and may help improve fruit fly pest management via the Sterile Insect Technique through semiochemical-mediated enhancement of sterile male mating performance.
  2. Schutze MK, Jessup A, Clarke AR
    Bull. Entomol. Res., 2012 Feb;102(1):103-11.
    PMID: 21867577 DOI: 10.1017/S0007485311000423
    Four morphologically cryptic species of the Bactrocera dorsalis fruit fly complex (B. dorsalis s.s., B. papayae, B. carambolae and B. philippinensis) are serious agricultural pests. As they are difficult to diagnose using traditional taxonomic techniques, we examined the potential for geometric morphometric analysis of wing size and shape to discriminate between them. Fifteen wing landmarks generated size and shape data for 245 specimens for subsequent comparisons among three geographically distinct samples of each species. Intraspecific wing size was significantly different within samples of B. carambolae and B. dorsalis s.s. but not within samples of B. papayae or B. philippinensis. Although B. papayae had the smallest wings (average centroid size=6.002 mm±0.061 SE) and B. dorsalis s.s. the largest (6.349 mm±0.066 SE), interspecific wing size comparisons were generally non-informative and incapable of discriminating species. Contrary to the wing size data, canonical variate analysis based on wing shape data discriminated all species with a relatively high degree of accuracy; individuals were correctly reassigned to their respective species on average 93.27% of the time. A single sample group of B. carambolae from locality 'TN Malaysia' was the only sample to be considerably different from its conspecific groups with regards to both wing size and wing shape. This sample was subsequently deemed to have been originally misidentified and likely represents an undescribed species. We demonstrate that geometric morphometric techniques analysing wing shape represent a promising approach for discriminating between morphologically cryptic taxa of the B. dorsalis species complex.
  3. Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A, Chomič A, et al.
    BMC Evol. Biol., 2012;12:130.
    PMID: 22846393
    Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status.
  4. Qin YJ, Krosch MN, Schutze MK, Zhang Y, Wang XX, Prabhakar CS, et al.
    Evol Appl, 2018 Dec;11(10):1990-2003.
    PMID: 30459843 DOI: 10.1111/eva.12701
    Bactrocera dorsalis, the Oriental fruit fly, is one of the world's most destructive agricultural insect pests and a major impediment to international fresh commodity trade. The genetic structuring of the species across its entire geographic range has never been undertaken, because under a former taxonomy B. dorsalis was divided into four distinct taxonomic entities, each with their own, largely non-overlapping, distributions. Based on the extensive sampling of six a priori groups from 63 locations, genetic and geometric morphometric datasets were generated to detect macrogeographic population structure, and to determine prior and current invasion pathways of this species. Weak population structure and high genetic diversity were detected among Asian populations. Invasive populations in Africa and Hawaii are inferred to be the result of separate, single invasions from South Asia, while South Asia is also the likely source of other Asian populations. The current northward invasion of B. dorsalis into Central China is the result of multiple, repeated dispersal events, most likely related to fruit trade. Results are discussed in the context of global quarantine, trade, and management of this pest. The recent expansion of the fly into temperate China, with very few associated genetic changes, clearly demonstrates the threat posed by this pest to ecologically similar areas in Europe and North America.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links