A cross-sectional study was conducted to determine the seroepidemiology of Toxoplasma infection and its risk association among people having close contact with animals. A total of 312 blood samples were collected from veterinary personnel (veterinarian, technicians, and students) and pet owners from veterinary clinics and hospitals in the area of Klang Valley, Malaysia. About 4 cc of blood samples drawn from agreed participants were processed for measurement of anti-Toxoplasma IgG and IgM antibodies as well as avidity test of Toxoplasma IgG by ELISA I, II, and III kits. Meanwhile, the demographic profiles and possible risk factors of these participants were also recorded in the standardized data collection sheets. Overall seroprevalence of toxoplasmosis was observed in 62 (19.9%) participants being 7 (18.4%) in veterinarians, 15 (33.3%) in veterinary technicians, 29 (14.9%) in veterinary students, and 11 (31.4%) in pet owners. Of 19.9% Toxoplasma seropositive samples, 18.3% was positive for IgG antibody, 1.0% for IgM antibody, and 0.6% for both IgG and IgM antibodies. Of three different IgG avidity ELISA kits, ELISA III showed high avidity in all five seropositive samples (IgM and IgG/IgM antibodies) indicating chronic Toxoplasma infection which is consistent with no evidence of clinical toxoplasmosis diagnosed during the time of this study. Univariate analysis showed that age group, gender, study population, gardening, task performance, and working duration were significantly associated with Toxoplasma seropositivity. Further analysis by multivariate analysis using logistic regression showed that age group of ≥30 years old (OR = 0.34, 95% CI = 0.18-0.63, p = 0.001) and working or study duration of >10 years having close contact with animals (OR = 5.07, 95% CI = 1.80-14.24, p = 0.002) were identified as significant risks for Toxoplasma infection. Based on the results obtained, a comprehensive Toxoplasma screening and health surveillance program on toxoplasmosis should be implemented among people having close contact with animals in general and confirmed Toxoplasma seronegative individuals in particular to prevent seroconversion.
Escherichia coli, a commensal in the intestines of vertebrates, is capable of colonizing many different hosts and the environment. Commensal E. coli strains are believed to be the precursor of pathogenic strains by means of acquisition of antimicrobial resistant and virulence genes. Laboratory rodents are inherently susceptible to numerous known infectious agents, which could transfer virulence determinants to commensal E. coli. Hence, in this study, the genetic structure of commensal E. coli found in laboratory rodents and their antimicrobial resistance profiles were investigated.
Rodents have historically been associated with zoonotic pandemics that claimed the lives of large human populations. Appropriate pathogen surveillance initiatives could contribute to early detection of zoonotic infections to prevent future outbreaks. Bordetella species are bacteria known to cause mild to severe respiratory disease in mammals and, some have been described to infect, colonize and spread in rodents. There is a lack of information on the population diversity of bordetellae among Malaysian wild rodents. Here, bordetellae recovered from lung tissues of wild rats were genotypically characterized using 16S rDNA sequencing, MLST and nrdA typing. A novel B. bronchiseptica ST82, closely related to other human-derived isolates, was discovered in three wild rats (n=3) from Terengganu (5.3333° N, 103.1500° E). B. pseudohinzii, a recently identified laboratory mice inhabitant, was also recovered from one rat (n=1). Both bordetellae displayed identical antimicrobial resistance profiles, indicating the close phylogenetic association between them. Genotyping using the 765-bp nrdA locus was shown to be compatible with the MLST-based phylogeny, with the added advantage of being able to genotype non-classical bordetellae. The recovery of B. pseudohinzii from wild rat implied that this bordetellae has a wider host range than previously thought. The findings from this study suggest that bordetellae surveillance among wild rats in Malaysia has to be continued and expanded to other states to ensure early identification of species capable of causing public health disorder.
Early diagnosis of dengue is important to ensure proper management of patients and effective implementation of control measures. The present study was undertaken to determine the outcome of the implementation of dengue NS1-antigen (Ag) rapid diagnostic test (RDT) in the confirmation of dengue at the first patient hospital visit at the University Malaya Medical Centre. A total of 1036 and 1097 sera from the year 2008 and 2015 were used, representing samples from before and after dengue NS1-Ag RDT was implemented as routine diagnostic at the hospital. Results showed that similar dengue confirmation percentage (56%) was made in 2008 and 2015, regardless of the main laboratory diagnostic method used. Confirmation of dengue, however, increased to 68% and 73% when dengue NS1-Ag test or dengue immunoglobulin M-capture enzyme-linked immunosorbent assay was used as the second test for the 2008 and 2015 samples, respectively. Detection of dengue virus (DENV) using multiplex reverse transcription-polymerase chain reaction (RT-PCR) showed that DENV-1 was the highest in circulation in 2008 and that both DENV-1 and DENV-2 were dominant in 2015. In summary, the present study demonstrated that the introduction and use of the dengue NS1-Ag RDT did not change or compromise confirmation of dengue, highlighting the advantage of using the method. With the reducing cost of molecular detection tools, DENV detection using RT-PCR remains a viable option for further confirmation of dengue in hospital settings.