Displaying all 12 publications

Abstract:
Sort:
  1. Ashraf S
    Med J Malaysia, 2012 Apr;67(2):207-9.
    PMID: 22822645 MyJurnal
    Primary intramedullary germinoma arising in the cervical spinal cord is a very rare entity. We present one such case arising in a young man who presented with radiculopathy and myelopathy, which was partially excised. Upon histological confirmation, he was treated successfully with radiotherapy alone. To our knowledge, this is only the second reported case worldwide which is histologically confirmed. Although extremely rare, differential diagnosis for intramedullary spinal cord tumor should include germinoma.
  2. Hamzaid NA, Manaf H, Azmi NL, Milosevic M, Spaich EG, Yoshida K, et al.
    Artif Organs, 2024 Apr;48(4):421-425.
    PMID: 38339848 DOI: 10.1111/aor.14720
    The annual conference of the International Functional Electrical Stimulation Society (IFESS) was held in conjunction with the 7th RehabWeek Congress, from September 24 to 28, 2023 at the Resorts World Convention Centre on Sentosa Island, in Singapore. The Congress was a joint meeting of the International Consortium on Rehabilitation Technology (ICRT) together with 10 other societies in the field of assistive technology and rehabilitation engineering. The conference features comprehensive blend of technical and clinical context of FES, a sustained value the society has offered over many years. The cross- and inter- disciplinary approach of medicine, engineering, and science practiced in the FES community had enabled vibrant interaction, creation, and development of impactful and novel contributions to the field of FES, translating FES directly into highly relevant and sustainable solutions for the users.
  3. Karim S, Naeem MA, Tiwari AK, Ashraf S
    Ann Oper Res, 2023 May 03.
    PMID: 37361090 DOI: 10.1007/s10479-023-05365-8
    The sustainability issues have been surmounted in the last decades. The digital disruption caused by blockchains and other digitally backed currencies has raised several serious concerns for policymakers, governmental agencies, environmentalists, and supply chain managers. Alternatively, sustainable resources are environmentally sustainable and naturally available resources which are employable by several regulation authorities to reduce the carbon footprint and attain energy transition mechanisms to support sustainable supply chains in the ecosystem. Using the asymmetric time-varying parameters vector auto-regressions approach, the current study examines the asymmetric spillovers between blockchain-backed currencies and environmentally supported resources. We find clusters between blockchain-based currencies and resource-efficient metals, highlighting similar-class dominance of spillovers. We portrayed several implications of our study for policymakers, supply chain managers, the blockchain industry, sustainable resources mechanisms, and regulatory bodies to emphasize that natural resources play a significant role in attaining sustainable supply chains servicing the benefits to society at large and to other stakeholders.
  4. Ashraf S, Al-Maweri SA, Alaizari N, Umair A, Ariffin Z, Alhajj MN, et al.
    J Oral Pathol Med, 2020 Nov;49(10):969-976.
    PMID: 32746493 DOI: 10.1111/jop.13093
    BACKGROUND: Oral lichen planus (OLP) is a relatively common inflammatory disease, with unclear etiology. A number of studies have linked Epstein-Barr virus (EBV) with OLP. The present systematic review and meta-analysis aimed to evaluate the available evidence regarding the potential association between EBV and OLP.

    METHODS: Online databases (PubMed, Scopus, Web of Science, ProQuest, and Google Scholar) were searched from date of inception till May 2020. Studies were included if they met the following criteria: 1) observational studies that assessed the relationship between EBV and OLP, 2) the study comprised OLP patients and control subjects, 3) diagnosis of OLP was confirmed histopathologically, and 4) articles were in English. Studies without control groups, experimental studies, case reports, and reviews were excluded. The fixed-effects model was performed for meta-analyses using RevMan 5.3 software.

    RESULTS: A total of 10 studies comprising 386 OLP cases and 304 controls were included. Of these, only 8 studies were eligible for the meta-analysis. The results of the quality assessment showed that only 2 studies were of high quality, while the remaining studies were of moderate quality. The results of the pooled eight studies revealed a significant positive association between EBV and OLP (OR = 4.41, 95% CI: [2.74, 7.11], P 

  5. Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, et al.
    Environ Pollut, 2023 Feb 15;319:120979.
    PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979
    Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
  6. Nayana RUK, Nakkeeran S, Saranya N, Saravanan R, Mahendra K, Ashraf S, et al.
    Mol Biotechnol, 2023 Aug 09.
    PMID: 37556108 DOI: 10.1007/s12033-023-00797-w
    Fusarium oxysporum f. sp. cubense is one of the most severe and threatening pathogens of bananas, causing "Panama wilt" worldwide. Confrontation assay of Foc antagonistic bacterial endophyte, Bacillus velezensis YEBBR6, with the Foc and GC-MS profiling of excised agar from the zone of inhibition, led to the unveiling of secondary metabolites produced by the endophyte. To refine the probable antifungal compounds among the numerous biomolecules formed during their di-trophic interaction with the pathogen, fungal protein targets were modeled, and docking studies (AutoDock Vina module of the PyRx 0.8 server) were done with all the compounds. Triamcinolone acetonide exhibited the most excellent affinity for the protein targets among the compounds studied. It had a maximum binding affinity of 11.2 kcal/mol for XRN2 (5' → 3'). Further, the protein-ligand complex formation kinetics was done through Molecular Dynamic Simulation studies. Graphs for the RMSD, RMSF, Rg, potential energy, and SASA were generated, and the values during the simulation period suggested the stability of the biomolecule as a complex with the protein. This indicated Triamcinolone acetonide's potential ability to act as a functional disrupter of the target protein and likely an antifungal molecule. Further, the biomolecule was tested for its activity against Foc by screening in the wet lab through the poisoned plate technique, and it was found to be fully inhibitory to the growth of the pathogen at 1000 ppm.
  7. Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, et al.
    RSC Adv, 2024 Nov 19;14(50):37164-37195.
    PMID: 39569125 DOI: 10.1039/d4ra05642f
    The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
  8. Al-Maweri SA, Alhajj MN, Anweigi L, Ashraf S, Halboub E, Salleh NM, et al.
    BMC Oral Health, 2024 Jan 16;24(1):84.
    PMID: 38229054 DOI: 10.1186/s12903-023-03789-z
    BACKGROUND: Photodynamic therapy (PDT) has been recently proposed as a promising alternative therapy for Denture Stomatitis (DS). The present systematic review and meta-analysis investigated the current available evidence regarding the efficacy of PDT in the management of DS.

    MATERIALS AND METHODS: PubMed, Scopus, Web of Science, Google Scholar, and ProQuest were searched up to June 7, 2023. All relevant clinical trials were included. RevMan software was used for the statistical analyses.

    RESULTS: Elven randomized clinical trials (460 DS patients) were included. Eight studies assessed the efficacy of PDT vs. topical antifungal therapy, while three studies assessed the adjunctive use of PDT (PDT + antifungal therapy) vs. topical antifungal therapy alone. The results revealed comparable efficacy of PDT and conventional antifungal therapy on candida colonization at 15 days (MD: 0.95, 95% CI: -0.28, 2.19, p = 0.13) and at the end of follow-up (MD: -0.17, 95% CI: -1.33, 0.98, p = 0.77). The pooled two studies revealed relatively better efficacy of adjunctive use of PDT with antifungal therapy on candida colonization compared to antifungal therapy alone at 15 days (MD: -6.67, 95% CI: -15.15, 1.82, p = 0.12), and at the end of follow-up (MD: -7.14, 95% CI: -19.78, 5.50, p = 0.27). Additionally, the results revealed comparable efficacy of PDT and topical antifungal therapy on the clinical outcomes.

    CONCLUSIONS: PDT might be considered a viable option for DS either as an adjunct or as an alternative to the topical antifungal medications. Further studies with adequate sample sizes and standardized PDT parameters are warranted.

  9. Showkat M, Narayanappa N, Umashankar N, Saraswathy BP, Doddanagappa S, Ashraf S, et al.
    J Basic Microbiol, 2024 Aug 29.
    PMID: 39210579 DOI: 10.1002/jobm.202400409
    Cordyceps militaris, a medicinal fungus, has gained considerable attention owing to its potential health benefits, notably the production of bioactive compounds such as cordycepin. Cordycepin possesses significant antifungal, antibacterial, and antiviral properties. The present study focused on optimizing the fermentation conditions for C. militaris to boost the production of mycelia and cordycepin, alongside investigating its antifungal properties using in silico and in vitro approaches. The optimal conditions, yielding the highest cordycepin and mycelial biomass, were a temperature of 20°C and a pH range of 4-6, with glucose and sucrose as carbon sources and yeast extract and casein hydrolysate as nitrogen sources. Under these conditions, cordycepin production peaked at low pH (600-1000 mg/L) and with carbon and maltose (400-500 mg/L). The low temperature favored cordycepin production (400 mg/L), whereas casein hydrolysate as a nitrogen source boosted cordycepin yield (600 mg/L). The docking analysis indicated that cordycepin had the highest binding affinity for the tubulin beta chain 2 (-10.4 kcal/mol) compared to the fungicide tebuconazole (-7.9 kcal/mol for both targets). The in silico results were corroborated by in vitro studies, where the mycelial extract of C. militaris inhibited approximately 75% of fungal growth at a concentration of 6000 ppm. These findings suggest that optimizing fermentation conditions significantly enhances cordycepin production, and cordycepin shows antifungal solid activity, making it a promising agent for biocontrol in agriculture.
  10. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al.
    Nat Commun, 2016 Feb 24;7:10822.
    PMID: 26905694 DOI: 10.1038/ncomms10822
    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
  11. Ashraf S, Ashraf S, Akmal R, Ashraf M, Kalsoom L, Maqsood A, et al.
    Trials, 2021 Sep 15;22(1):618.
    PMID: 34526081 DOI: 10.1186/s13063-021-05510-3
    OBJECTIVES: Considering the therapeutic potential of honey and Nigella sativa (HNS) in coronavirus disease 2019 (COVID-19) patients, the objective of the study is defined to evaluate the prophylactic role of HNS.

    TRIAL DESIGN: The study is a randomized, placebo-controlled, adaptive clinical trial with parallel group design, superiority framework with an allocation ratio of 1:1 among experimental (HNS) and placebo group. An interim analysis will be done when half of the patients have been recruited to evaluate the need to adapt sample size, efficacy, and futility of the trial.

    PARTICIPANTS: All asymptomatic patients with hospital or community based COVID-19 exposure will be screened if they have had 4 days exposure to a confirmed case. Non-pregnant adults with significant exposure level will be enrolled in the study High-risk exposure (<6 feet distance for >10min without face protection) Moderate exposure (<6 feet distance for >10min with face protection) Subjects with acute or chronic infection, COVID-19 vaccinated, and allergy to HNS will be excluded from the study. Recruitment will be done at Shaikh Zayed Post-Graduate Medical Institute, Ali Clinic and Doctors Lounge in Lahore (Pakistan).

    INTERVENTION AND COMPARATOR: In this clinical study, patients will receive either raw natural honey (0.5 g) and encapsulated organic Nigella sativa seeds (40 mg) per kg body weight per day or empty capsule with and 30 ml of 5% dextrose water as a placebo for 14 days. Both the natural products will be certified for standardization by Government College University (Botany department). Furthermore, each patient will be given standard care therapy according to version 3.0 of the COVID-19 clinical management guidelines by the Ministry of National Health Services of Pakistan.

    MAIN OUTCOMES: Primary outcome will be Incidence of COVID-19 cases within 14 days of randomisation. Secondary endpoints include incidence of COVID-19-related symptoms, hospitalizations, and deaths along with the severity of COVID-19-related symptoms till 14th day of randomization.

    RANDOMISATION: Participants will be randomized into experimental and control groups (1:1 allocation ratio) via the lottery method. There will be stratification based on high risk and moderate risk exposure.

    BLINDING (MASKING): Quadruple blinding will be ensured for the participants, care providers and outcome accessors. Data analysts will also be blinded to avoid conflict of interest. Site principal investigator will be responsible for ensuring masking.

    NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 1000 participants will be enrolled in the study with 1:1 allocation.

    TRIAL STATUS: The final protocol version 1.4 was approved by institutional review board of Shaikh Zayed Post-Graduate Medical Complex on February 15, 2021. The trial recruitment was started on March 05, 2021, with a trial completion date of February 15, 2022.

    TRIAL REGISTRATION: Clinical trial was registered on February 23, 2021, www.clinicaltrials.gov with registration ID NCT04767087 .

    FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). With the intention of expediting dissemination of this trial, the conventional formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines.

  12. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al.
    Nat Genet, 2017 Oct;49(10):1529-1538.
    PMID: 28805828 DOI: 10.1038/ng.3933
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links