Displaying 1 publication

Abstract:
Sort:
  1. Sriani T, Mahardika M, Arifvianto B, Yusof F, Whulanza Y, Prihandana GS, et al.
    Polymers (Basel), 2024 Oct 31;16(21).
    PMID: 39518297 DOI: 10.3390/polym16213079
    Polysulfone (Psf) ultrafiltration flat-sheet membranes were modified with hydroxyapatite (HA) powder during preparation using the wet-phase inversion method. HA was incorporated to enhance the protein separation capabilities. The asymmetric Psf membranes were synthesized using NMP as the solvent. Through Scanning Electron Microscopy (SEM) analysis, it was revealed that HA was distributed across the membrane. Incorporating HA led to higher flux, the improved rejection of protein, and enhanced surface hydrophilicity. The permeability flux increased with HA concentration, peaking at 0.3 wt.%, resulting in a 38% improvement to 65 LMH/bar. Whey protein separation was evaluated using the model proteins BSA and lysozyme, representing α-Lactalbumin. The results of protein rejection for the blend membranes indicated that the rejection rates for BSA and lysozyme increased to 97.2% and 73%, respectively. Both the native and blend membranes showed similar BSA rejection rates; however, the blend membranes demonstrated better performance in lysozyme separation, indicating superior selectivity compared to native membranes. The modified membranes exhibited improved hydrophilicity, with water contact angles decreasing from 66° to 53°, alongside improved antifouling properties, indicated by a lower flux decline ratio value. This simple and economical modification method enhances permeability without sacrificing separation efficiency, hence facilitating the scalability of membrane production in the whey protein separation industry.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links