Anopheles (Cellia) sundaicus (Rodenwaldt) is an important malaria vector in the Andaman and Nicobar islands of India where it breeds in freshwater as well as in brackish water. To establish the molecular identity of An. sundaicus on these islands we analyzed samples from four geographically isolated areas-Teressa, Nancowry, Car Nicobar and Katchal islands. PCR-amplification and nucleotide sequence analysis were performed for internal transcribed spacer 2 (ITS2) and domain-3 (D3) of 28S rRNA. The ITS2 region of An. sundaicus from all four islands was identical but different from An. sundaicus A of Vietnam and An. sundaicus s.s of Malaysia. Furthermore, freshwater and brackish water forms of An. sundaicus did not reveal any sequence variation. Similarly, the D3 sequences were identical among all An. sundaicus samples from the four islands. D3 sequences for a species of the Sundaicus Complex are reported here for the first time and thus could not be compared with other regional isolates of this species. In conclusion, probably only one member of the Sundaicus Complex exists on the Andaman and Nicobar islands, which breeds in freshwater as well as in brackish water and is different from the An. sundaicus A and Malaysian An. sundaicus s.s. The identification of a new sibling species of the Sundaicus Complex in these islands is significant from the viewpoint of vector control strategies.
Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
Considering how crucial environmental quality is to development, production often takes precedence over the development process when certain macroeconomic policies are being implemented. This phenomenon has been the subject of several studies conducted in various regions and nations. In this context, the recent article explores the nonlinear effects of industrial output, renewable energy, technological innovations, energy efficiency, and urbanization on CO2 emissions in the top ten industrialized countries. It recommends contradictory policy approaches due to its reported conflicting outcomes, opening up new research directions. To this end, the study relies on advanced econometric tools such as panel QARDL (Quantile Autoregressive Distributed Lag) and the nonparametric quantile Granger causality (NPQGC) test to attain robust results. The findings suggest that industrial output and urbanization significantly deteriorate environmental quality by increasing CO2 emissions across various time horizons. However, renewable energy, technological innovations, and energy efficiency have a significant influence towards enhancing environmental quality. Notably, industrialization and urbanization become environmentally friendly when energy efficiency is integrated with these variables. Additionally, the NPQGC test supports the main results by confirming the Granger causality between the modelled series. Based on the outcomes, the study suggests that the integration of energy efficiency with industrialization and urbanization can significantly contribute to achieving a sustainable environment.
Nanocellulose-graphene hybrid composites for high-performance uses have been the focus of recent research. In contrast to graphene, which has great conductivity and mechanical strength, nanocellulose possesses special qualities like renewability and biocompatibility but lacks electrical conductivity. Since graphene-nanocellulose has such promising features, efforts to make flexible electronic composites employing them have accelerated. However, the environmental impacts are needed to be addressed prior to the applications of these hybrid composites. This review article explores environmental aspects for nanocellulose-graphene hybrid composites because of their sustainability, which is a major step in the right direction. The article also emphasizes how these composites have the potential to transform several industries and open the door to a more environmentally friendly future. This paper explores into the most recent developments in nanocellulose-graphene hybrid composites, highlighting its environmental benefits and adaptability. These composites offer remarkable performance by combining the strength and conductivity of graphene with the mechanical, electrical, and thermal capabilities of nanocellulose.
Nonalcoholic fatty liver disease (NAFLD) is one of the commonest liver disorders. Obesity, insulin resistance, lipid peroxidation and oxidative stress have been identified amongst the possible hits leading to the onset and progression of this disease. Nutritional evaluation of NAFLD patients showed a lower-than-recommended intake of vitamin E. Vitamin E is a family of 8 isoforms, 4 tocopherols and 4 tocotrienols. Alpha-tocopherol has been widely investigated in liver diseases, whereas no previous clinical trial has investigated tocotrienols for NAFLD. Aim of the study was to determine the effects of mixed tocotrienols, in normalising the hepatic echogenic response in hypercholesterolaemic patients with ultrasound-proven NAFLD.
Boerhavia diffusa (BD) Linn. (Nyctaginaceae) is one of the most commonly used herbs in the Indian traditional system of medicine for the urinary disorders. The aim of the current investigation was to carry out initiation, development, and maintenance of BD callus cultures and quantitative estimation of punarnavine in plant and callus extracts. Leaves and stem of BD were used as explant for the tissue culture studies using Murashige and Skoog (MS) basal medium. MS Media comprising 2,4-Dichlorophenoxy acetic acid (2,4-D) (1 ppm) and 2,4-D (1 ppm) + Indole-3-acetic acid (IAA) (1.0 ppm) were found to yield friable callus from leaf explant; similarly, 2,4-D (0.3 ppm) + IAA (0.75 ppm) + Kinetin (0.3 ppm) and 2,4-D (0.5 ppm) + Naphthalene acetic acid (NAA) (1.5 ppm) + Kinetin (0.3 ppm) were found to yield friable callus from the stem explant. High-performance thin-layer chromatography method was been developed for the quantitative estimation of punarnavine (Rf = 0.73) using mobile phase containing toluene: ethyl acetate: formic acid in the ratio (7.0:2.5:0.7, v/v/v) at 262 nm. The validated method was found linear (r2 = 0.9971) in a wide range (100-1000 ng spot-1), precise, accurate, and robust. The values of limit of detection, LOD = 30.3 ng spot-1, and limit of quantification, LOQ = 100.0 ng spot-1. The robustness of the method was proved by applying the Box-Behnken design (BBD). The developed method found appropriate for the quality control of medicinal plants containing punarnavine as a constituent.
Previous cell-based and animal studies showed mixed tocotrienols are neuroprotective, but the effect is yet to be proven in humans. Thus, the present study aimed to evaluate the protective activity of mixed tocotrienols in humans with white matter lesions (WMLs). WMLs are regarded as manifestations of cerebral small vessel disease, reflecting varying degrees of neurodegeneration and tissue damage with potential as a surrogate end point in clinical trials.
To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and a frequent finding on ultrasound examination. NAFLD is considered as the liver component of metabolic syndrome and is linked to accelerated atherosclerosis and cardiovascular disease. No data from systematic studies regarding the prevalence of NAFLD are available for the Malaysian population. One hundred eighty untreated hypercholesterolemic volunteers underwent blood and ultrasound examinations to evaluate their livers. NAFLD was diagnosed in 102 subjects (56.7%) with similar prevalences between sexes. Of the 102 positive subjects 82 (80.4%) were graded as mild, 17 (16.7%) as moderate and 3 (2.9%) as severe fatty liver cases. Elevated fasting plasma glucose (FPG) levels were found in 13 of 180 subjects (7.2%), while elevated AST and ALT levels were seen in 30 (16.7%) and 22 (12.2%) of the180 subjects, respectively.