Displaying all 2 publications

Abstract:
Sort:
  1. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, et al.
    Lipids, 2004 May;39(5):459-67.
    PMID: 15506241
    It has recently been shown that tocotrienols are the components of vitamin E responsible for inhibiting the growth of human breast cancer cells in vitro, through an estrogen-independent mechanism. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. To investigate the molecular basis of the effect of tocotrienols, we injected MCF-7 breast cancer cells into athymic nude mice. Mice were fed orally with 1 mg/d of tocotrienol-rich fraction (TRF) for 20 wk. At end of the 20 wk, there was a significant delay in the onset, incidence, and size of the tumors in nude mice supplemented with TRF compared with the controls. At autopsy, the tumor tissue was excised and analyzed for gene expression by means of a cDNA array technique. Thirty out of 1176 genes were significantly affected. Ten genes were downregulated and 20 genes up-regulated with respect to untreated animals, and some genes in particular were involved in regulating the immune system and its function. The expression of the interferon-inducible transmembrane protein-1 gene was significantly up-regulated in tumors excised from TRF-treated animals compared with control mice. Within the group of genes related to the immune system, we also found that the CD59 glycoprotein precursor gene was up-regulated. Among the functional class of intracellular transducers/effectors/modulators, the c-myc gene was significantly down-regulated in tumors by TRF treatment. Our observations indicate that TRF supplementation significantly and specifically affects MCF-7 cell response after tumor formation in vivo and therefore the host immune function. The observed effect on gene expression is possibly exerted independently from the antioxidant activity typical of this family of molecules.
  2. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Canali R, Virgili F
    Ann N Y Acad Sci, 2004 Dec;1031:143-57.
    PMID: 15753141
    Vitamin E is important not only for its cellular antioxidant and lipid-lowering properties, but also as an antiproliferating agent. It has also been shown to contribute to immunoregulation, antibody production, and resistance to implanted tumors. It has recently been shown that tocotrienols are the components of vitamin E responsible for growth inhibition in human breast cancer cells in vitro as well as in vivo through estrogen-independent mechanisms. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. In order to investigate the molecular basis of the effect of a tocotrienol-rich fraction (TRF) from palm oil, we performed a cDNA array analysis of cancer-related gene expression in estrogen-dependent (MCF-7) and estrogen-independent (MDA-MB-231) human breast cancer cells. The human breast cancer cells were incubated with or without 8 mug/mL of tocotrienols for 72 h. RNA was subsequently extracted and subjected to reverse transcription before being hybridized onto cancer arrays. Tocotrienol supplementation modulated significantly 46 out of 1200 genes in MDA-MB-231 cells. In MCF-7 cells, tocotrienol administration was associated with a lower number of affected genes. Interestingly, only three were affected in a similar fashion in both cell lines: c-myc binding protein MM-1, 23-kDa highly basic protein, and interferon-inducible protein 9-27 (IFITM-1). These proteins are most likely involved in the cell cycle and can exert inhibitory effects on cell growth and differentiation of the tumor cell lines. These data suggest that tocotrienols are able to affect cell homeostasis, possibly independent of their antioxidant activity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links