Displaying all 10 publications

Abstract:
Sort:
  1. Ali, G., Russly, A.R., Jamilah, B., Azizah, O., Mandana, B.
    MyJurnal
    This study aims to evaluate the effect of heat and the simultaneous application of heat (80-95°C) and ultrasonic waves (thermosonication) on the inactivation kinetic of peroxidase and vitamin C degradation in seedless guava. Ultrasonic wave’s amplitudes except 25 and 100% had significant (P 0.98). In the heat blanching process, the peroxidase inactivation rate constant increased from 1.1×10-2 to 4.6×10-2 s-1. However, the inactivation rate of peroxidase was increased by 1.5–3 times in the temperature range 80–95ºC, with the 50 and 75% ultrasonic wave amplitudes, respectively. Decreases in vitamin C contents due to blanching treatments were found. Blanching processes at high temperature and short time resulted in higher vitamin C retention. It was found that thermosonication treatment inactivates seedless guava peroxidase at less severe blanching conditions and consequently retains vitamin C content at higher levels. The present findings will help to design the blanching conditions in order to reduce the severity of conventional thermal treatments and, therefore, improving the quality of the thermally treated product.
  2. Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S., Ali. G.
    MyJurnal
    In this study, the effect of different solvent including ethanol, n-hexane and ethyl acetate on antioxidant
    activity and total phenolic content (TPC) of winter melon (Benincasa hispida) seeds extract was investigated using conventional Soxhlet extraction (CSE). DPPH and ABTS scavenging activity and TPC results indicated that the seed extracts obtained using ethanol possessed the highest antioxidant activity and followed by ethyl acetate and n-hexane. By considering obtained results, it was clear that there was a high positive correlation between TPC and antioxidant activity. Linoleic acid forms a significant percentage of unsaturated fatty acids of the seed extract (60.6%). It is well known that essential fatty acids including linoleic acid and linolenic acid which are detected in extracts play important roles in preventing many disease and abnormal differentiation problems. B. hispida seeds are potential source of natural antioxidant compounds to replace synthetic antioxidants.
  3. Arumugaswamy RK, Ali GR, ab Hamid SN
    Lancet, 1993 Jul 24;342(8865):247.
    PMID: 8100972
  4. Arumugaswamy RK, Ali GR, Abd Hamid SN
    Int J Food Microbiol, 1994 Sep;23(1):117-21.
    PMID: 7811569
    A total of 234 samples of food, consisting of 158 of raw and 76 samples of ready-to-eat food were examined for the presence of Listeria monocytogenes. The frequencies of L. monocytogenes contamination in raw foods were: chicken portions (60%), liver (60%) and gizzard (62%), beef (50%), beansprout (85%), prawns (44%), kupang (dried oysters) (33%), bean cake (25%), satay (48%) and leafy vegetables (22%). Of the ready-to-eat foods: satay (26%), prawns, squids, clams and chicken dishes (22%), cucumber (80%) and peanut sauce (20%) were found to yield L. monocytogenes.
  5. Qureshi MI, Rasli AM, Awan U, Ma J, Ali G, Faridullah, et al.
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3467-76.
    PMID: 25242593 DOI: 10.1007/s11356-014-3584-2
    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials.
  6. Zia-Ur-Rehman, Awang MK, Rashid J, Ali G, Hamid M, Mahmoud SF, et al.
    PLoS One, 2024;19(9):e0304995.
    PMID: 39240975 DOI: 10.1371/journal.pone.0304995
    Alzheimer's disease (AD) is a brain illness that causes gradual memory loss. AD has no treatment and cannot be cured, so early detection is critical. Various AD diagnosis approaches are used in this regard, but Magnetic Resonance Imaging (MRI) provides the most helpful neuroimaging tool for detecting AD. In this paper, we employ a DenseNet-201 based transfer learning technique for diagnosing different Alzheimer's stages as Non-Demented (ND), Moderate Demented (MOD), Mild Demented (MD), Very Mild Demented (VMD), and Severe Demented (SD). The suggested method for a dataset of MRI scans for Alzheimer's disease is divided into five classes. Data augmentation methods were used to expand the size of the dataset and increase DenseNet-201's accuracy. It was found that the proposed strategy provides a very high classification accuracy. This practical and reliable model delivers a success rate of 98.24%. The findings of the experiments demonstrate that the suggested deep learning approach is more accurate and performs well compared to existing techniques and state-of-the-art methods.
  7. Rahman M, Afzal O, Ullah SNMN, Alshahrani MY, Alkhathami AG, Altamimi ASA, et al.
    ACS Omega, 2023 Dec 26;8(51):48625-48649.
    PMID: 38162753 DOI: 10.1021/acsomega.3c07345
    Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
  8. Ali G, Nisar J, Iqbal M, Shah A, Abbas M, Shah MR, et al.
    Waste Manag Res, 2019 Aug 13.
    PMID: 31405341 DOI: 10.1177/0734242X19865339
    Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin-1, 10°Cmin-1, 15°Cmin-1 and 20°Cmin-1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats-Redfern) and model free methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats-Redfern, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman models were found in the ranges 105-148.48 kJmol-1, 99.41-140.52 kJmol-1, 103.67-149.15 kJmol-1 and 99.93-141.25 kJmol-1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.
  9. Ikram M, Bari MA, Bilal M, Jamal F, Nabgan W, Haider J, et al.
    Biomater Adv, 2023 Feb;145:213234.
    PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234
    Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
  10. Garg K, Dhar S, Sharma VK, Azman EA, Meena RP, Hashim M, et al.
    Front Plant Sci, 2024;15:1398083.
    PMID: 38962246 DOI: 10.3389/fpls.2024.1398083
    Utilizing agricultural and industrial wastes, potent reservoirs of nutrients, for nourishing the soil and crops through composting embodies a sustainable approach to waste management and organic agriculture. To investigate this, a 2-year field experiment was conducted at ICAR-IARI, New Delhi, focusing on a pigeon pea-vegetable mustard-okra cropping system. Seven nutrient sources were tested, including a control (T1), 100% recommended dose of nitrogen (RDN) through farmyard manure (T2), 100% RDN through improved rice residue compost (T3), 100% RDN through a paddy husk ash (PHA)-based formulation (T4), 75% RDN through PHA-based formulation (T5), 100% RDN through a potato peel compost (PPC)-based formulation (T6), and 75% RDN through PPC-based formulation (T7). Employing a randomized block design with three replications, the results revealed that treatment T4 exhibited the significantly highest seed (1.89 ± 0.09 and 1.97 ± 0.12 t ha-1) and stover (7.83 ± 0.41 and 8.03 ± 0.58 t ha-1) yield of pigeon pea, leaf yield (81.57 ± 4.69 and 82.97 ± 4.17 t ha-1) of vegetable mustard, and fruit (13.54 ± 0.82 and 13.78 ± 0.81 t ha-1) and stover (21.64 ± 1.31 and 22.03 ± 1.30 t ha-1) yield of okra during both study years compared to the control (T1). Treatment T4 was on par with T2 and T6 for seed and stover yield in pigeon pea, as well as okra, and leaf yield in vegetable mustard over both years. Moreover, T4 demonstrated notable increase of 124.1% and 158.2% in NH4-N and NO3-N levels in the soil, respectively, over the control. The enhanced status of available nitrogen (N) and phosphorus (P) in the soil, coupled with increased soil organic carbon (0.41%), total bacteria population (21.1%), fungi (37.2%), actinomycetes (44.6%), and microbial biomass carbon (28.5%), further emphasized the positive impact of T4 compared to the control. Treatments T2 and T6 exhibited comparable outcomes to T4 concerning changes in available N, P, soil organic carbon, total bacteria population, fungi, actinomycetes, and microbial biomass carbon. In conclusion, treatments T4 and T6 emerge as viable sources of organic fertilizer, particularly in regions confronting farmyard manure shortages. These formulations offer substantial advantages, including enhanced yield, soil quality improvement, and efficient fertilizer utilization, thus contributing significantly to sustainable agricultural practices.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links