Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Albahri AS, Hamid RA, Albahri OS, Zaidan AA
    Artif Intell Med, 2021 Jan;111:101983.
    PMID: 33461683 DOI: 10.1016/j.artmed.2020.101983
    CONTEXT AND BACKGROUND: Corona virus (COVID) has rapidly gained a foothold and caused a global pandemic. Particularists try their best to tackle this global crisis. New challenges outlined from various medical perspectives may require a novel design solution. Asymptomatic COVID-19 carriers show different health conditions and no symptoms; hence, a differentiation process is required to avert the risk of chronic virus carriers.

    OBJECTIVES: Laboratory criteria and patient dataset are compulsory in constructing a new framework. Prioritisation is a popular topic and a complex issue for patients with COVID-19, especially for asymptomatic carriers due to multi-laboratory criteria, criterion importance and trade-off amongst these criteria. This study presents new integrated decision-making framework that handles the prioritisation of patients with COVID-19 and can detect the health conditions of asymptomatic carriers.

    METHODS: The methodology includes four phases. Firstly, eight important laboratory criteria are chosen using two feature selection approaches. Real and simulation datasets from various medical perspectives are integrated to produce a new dataset involving 56 patients with different health conditions and can be used to check asymptomatic cases that can be detected within the prioritisation configuration. The first phase aims to develop a new decision matrix depending on the intersection between 'multi-laboratory criteria' and 'COVID-19 patient list'. In the second phase, entropy is utilised to set the objective weight, and TOPSIS is adapted to prioritise patients in the third phase. Finally, objective validation is performed.

    RESULTS: The patients are prioritised based on the selected criteria in descending order of health situation starting from the worst to the best. The proposed framework can discriminate among mild, serious and critical conditions and put patients in a queue while considering asymptomatic carriers. Validation findings revealed that the patients are classified into four equal groups and showed significant differences in their scores, indicating the validity of ranking.

    CONCLUSIONS: This study implies and discusses the numerous benefits of the suggested framework in detecting/recognising the health condition of patients prior to discharge, supporting the hospitalisation characteristics, managing patient care and optimising clinical prediction rule.

  2. Alshammari RFN, Abd Rahman AH, Arshad H, Albahri OS
    Sensors (Basel), 2023 Dec 05;23(24).
    PMID: 38139465 DOI: 10.3390/s23249619
    Existing methods for scoring student presentations predominantly rely on computer-based implementations and do not incorporate a robotic multi-classification model. This limitation can result in potential misclassification issues as these approaches lack active feature learning capabilities due to fixed camera positions. Moreover, these scoring methods often solely focus on facial expressions and neglect other crucial factors, such as eye contact, hand gestures and body movements, thereby leading to potential biases or inaccuracies in scoring. To address these limitations, this study introduces Robotics-based Presentation Skill Scoring (RPSS), which employs a multi-model analysis. RPSS captures and analyses four key presentation parameters in real time, namely facial expressions, eye contact, hand gestures and body movements, and applies the fuzzy Delphi method for criteria selection and the analytic hierarchy process for weighting, thereby enabling decision makers or managers to assign varying weights to each criterion based on its relative importance. RPSS identifies five academic facial expressions and evaluates eye contact to achieve a comprehensive assessment and enhance its scoring accuracy. Specific sub-models are employed for each presentation parameter, namely EfficientNet for facial emotions, DeepEC for eye contact and an integrated Kalman and heuristic approach for hand and body movements. The scores are determined based on predefined rules. RPSS is implemented on a robot, and the results highlight its practical applicability. Each sub-model is rigorously evaluated offline and compared against benchmarks for selection. Real-world evaluations are also conducted by incorporating a novel active learning approach to improve performance by leveraging the robot's mobility. In a comparative evaluation with human tutors, RPSS achieves a remarkable average agreement of 99%, showcasing its effectiveness in assessing students' presentation skills.
  3. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS
    J Med Syst, 2019 May 29;43(7):207.
    PMID: 31144129 DOI: 10.1007/s10916-019-1336-z
    This paper presents comprehensive insights into mobile patient monitoring systems (MPMSs) from evaluation and benchmarking aspects on the basis of two critical directions. The current evaluation criteria of MPMSs based on the architectural components of MPMSs and possible solutions are discussed. This review highlights four serious issues, namely, multiple evaluation criteria, criterion importance, unmeasurable criteria and data variation, in MPMS benchmarking. Multicriteria decision-making (MCDM) analysis techniques are proposed as effective solutions to solve these issues from a methodological aspect. This methodological aspect involves a framework for benchmarking MPMSs on the basis of MCDM to rank available MPMSs and select a suitable one. The benchmarking framework is discussed in four steps. Firstly, pre-processing and identification procedures are presented. Secondly, the procedure of weight calculation based on the best-worst method (BWM) is described. Thirdly, the development of a benchmark framework by using the VIKOR method is introduced. Lastly, the proposed framework is validated.
  4. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS
    J Med Syst, 2019 Jun 06;43(7):219.
    PMID: 31172296 DOI: 10.1007/s10916-019-1339-9
    This study presents a prioritisation framework for mobile patient monitoring systems (MPMSs) based on multicriteria analysis in architectural components. This framework selects the most appropriate system amongst available MPMSs for the telemedicine environment. Prioritisation of MPMSs is a challenging task due to (a) multiple evaluation criteria, (b) importance of criteria, (c) data variation and (d) unmeasurable values. The secondary data presented as the decision evaluation matrix include six systems (namely, Yale-National Aeronautics and Space Administration (NASA), advanced health and disaster aid network, personalised health monitoring, CMS, MobiHealth and NTU) as alternatives and 13 criteria (namely, supported number of sensors, sensor front-end (SFE) communication, SFE to mobile base unit (MBU) communications, display of biosignals on the MBU, storage of biosignals on the MBU, intra-body area network (BAN) communication problems, extra-BAN communication problems, extra-BAN communication technology, extra-BAN communication protocols, back-end system communication technology, intended geographic area of use, end-to-end security and reported trial problems) based on the architectural components of MPMSs. These criteria are adopted from the most relevant studies and are found to be applicable to this study. The prioritisation framework is developed in three stages. (1) The unmeasurable values of the MPMS evaluation criteria in the adopted decision evaluation matrix based on expert opinion are represented by using the best-worst method (BWM). (2) The importance of the evaluation criteria based on the architectural components of the MPMS is determined by using the BWM. (3) The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is utilised to rank the MPMSs according to the determined importance of the evaluation criteria and the adopted decision matrix. For validation, mean ± standard deviation is used to verify the similarity of systematic prioritisations objectively. The following results are obtained. (1) The BWM represents the unmeasurable values of the MPMS evaluation criteria. (2) The BWM is suitable for weighing the evaluation criteria based on the architectural components of the MPMS. (3) VIKOR is suitable for solving the MPMS prioritisation problem. Moreover, the internal and external VIKOR group decision making are approximately the same, with the best MPMS being 'Yale-NASA' and the worst MPMS being 'NTU'. (4) For the objective validation, remarkable differences are observed between the group scores, which indicate the similarity of internal and external prioritisation results.
  5. Albahri OS, Zaidan AA, Zaidan BB, Hashim M, Albahri AS, Alsalem MA
    J Med Syst, 2018 Jul 25;42(9):164.
    PMID: 30043085 DOI: 10.1007/s10916-018-1006-6
    Promoting patient care is a priority for all healthcare providers with the overall purpose of realising a high degree of patient satisfaction. A medical centre server is a remote computer that enables hospitals and physicians to analyse data in real time and offer appropriate services to patients. The server can also manage, organise and support professionals in telemedicine. Therefore, a remote medical centre server plays a crucial role in sustainably delivering quality healthcare services in telemedicine. This article presents a comprehensive review of the provision of healthcare services in telemedicine applications, especially in the medical centre server. Moreover, it highlights the open issues and challenges related to providing healthcare services in the medical centre server within telemedicine. Methodological aspects to control and manage the process of healthcare service provision and three distinct and successive phases are presented. The first phase presents the identification process to propose a decision matrix (DM) on the basis of a crossover of 'multi-healthcare services' and 'hospital list' within intelligent data and service management centre (Tier 4). The second phase discusses the development of a DM for hospital selection on the basis of integrated VIKOR-Analytic Hierarchy Process (AHP) methods. Finally, the last phase examines the validation process for the proposed framework.
  6. Albahri AS, Zaidan AA, Albahri OS, Zaidan BB, Alsalem MA
    J Med Syst, 2018 Jun 23;42(8):137.
    PMID: 29936593 DOI: 10.1007/s10916-018-0983-9
    The burden on healthcare services in the world has increased substantially in the past decades. The quality and quantity of care have to increase to meet surging demands, especially among patients with chronic heart diseases. The expansion of information and communication technologies has led to new models for the delivery healthcare services in telemedicine. Therefore, mHealth plays an imperative role in the sustainable delivery of healthcare services in telemedicine. This paper presents a comprehensive review of healthcare service provision. It highlights the open issues and challenges related to the use of the real-time fault-tolerant mHealth system in telemedicine. The methodological aspects of mHealth are examined, and three distinct and successive phases are presented. The first discusses the identification process for establishing a decision matrix based on a crossover of 'time of arrival of patient at the hospital/multi-services' and 'hospitals' within mHealth. The second phase discusses the development of a decision matrix for hospital selection based on the MAHP method. The third phase discusses the validation of the proposed system.
  7. Mohsin AH, Zaidan AA, Zaidan BB, Albahri AS, Albahri OS, Alsalem MA, et al.
    J Med Syst, 2018 Oct 16;42(12):238.
    PMID: 30327939 DOI: 10.1007/s10916-018-1104-5
    The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study's goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
  8. Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, et al.
    Comput Methods Programs Biomed, 2020 Mar;185:105151.
    PMID: 31710981 DOI: 10.1016/j.cmpb.2019.105151
    CONTEXT: Telemedicine has been increasingly used in healthcare to provide services to patients remotely. However, prioritising patients with multiple chronic diseases (MCDs) in telemedicine environment is challenging because it includes decision-making (DM) with regard to the emergency degree of each chronic disease for every patient.

    OBJECTIVE: This paper proposes a novel technique for reorganisation of opinion order to interval levels (TROOIL) to prioritise the patients with MCDs in real-time remote health-monitoring system.

    METHODS: The proposed TROOIL technique comprises six steps for prioritisation of patients with MCDs: (1) conversion of actual data into intervals; (2) rule generation; (3) rule ordering; (4) expert rule validation; (5) data reorganisation; and (6) criteria weighting and ranking alternatives within each rule. The secondary dataset of 500 patients from the most relevant study in a remote prioritisation area was adopted. The dataset contains three diseases, namely, chronic heart disease, high blood pressure (BP) and low BP.

    RESULTS: The proposed TROOIL is an effective technique for prioritising patients with MCDs. In the objective validation, remarkable differences were recognised among the groups' scores, indicating identical ranking results. In the evaluation of issues within all scenarios, the proposed framework has an advantage of 22.95% over the benchmark framework.

    DISCUSSION: Patients with the most severe MCD were treated first on the basis of their highest priority levels. The treatment for patients with less severe cases was delayed more than that for other patients.

    CONCLUSIONS: The proposed TROOIL technique can deal with multiple DM problems in prioritisation of patients with MCDs.

  9. Mohsin AH, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, et al.
    J Med Syst, 2019 May 22;43(7):192.
    PMID: 31115768 DOI: 10.1007/s10916-019-1264-y
    In medical systems for patient's authentication, keeping biometric data secure is a general problem. Many studies have presented various ways of protecting biometric data especially finger vein biometric data. Thus, It is needs to find better ways of securing this data by applying the three principles of information security aforementioned, and creating a robust verification system with high levels of reliability, privacy and security. Moreover, it is very difficult to replace biometric information and any leakage of biometrics information leads to earnest risks for example replay attacks using the robbed biometric data. In this paper presented criticism and analysis to all attempts as revealed in the literature review and discussion the proposes a novel verification secure framework based confidentiality, integrity and availability (CIA) standard in triplex blockchain-particle swarm optimization (PSO)-advanced encryption standard (AES) techniques for medical systems patient's authentication. Three stages are performed on discussion. Firstly, proposes a new hybrid model pattern in order to increase the randomization based on radio frequency identification (RFID) and finger vein biometrics. To achieve this, proposed a new merge algorithm to combine the RFID features and finger vein features in one hybrid and random pattern. Secondly, how the propose verification secure framework are followed the CIA standard for telemedicine authentication by combination of AES encryption technique, blockchain and PSO in steganography technique based on proposed pattern model. Finally, discussed the validation and evaluation of the proposed verification secure framework.
  10. Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Alsalem MA, Albahri AS, et al.
    J Med Syst, 2019 Jun 11;43(7):223.
    PMID: 31187288 DOI: 10.1007/s10916-019-1362-x
    Remotely monitoring a patient's condition is a serious issue and must be addressed. Remote health monitoring systems (RHMS) in telemedicine refers to resources, strategies, methods and installations that enable doctors or other medical professionals to work remotely to consult, diagnose and treat patients. The goal of RHMS is to provide timely medical services at remote areas through telecommunication technologies. Through major advancements in technology, particularly in wireless networking, cloud computing and data storage, RHMS is becoming a feasible aspect of modern medicine. RHMS for the prioritisation of patients with multiple chronic diseases (MCDs) plays an important role in sustainably providing high-quality healthcare services. Further investigations are required to highlight the limitations of the prioritisation of patients with MCDs over a telemedicine environment. This study introduces a comprehensive and inclusive review on the prioritisation of patients with MCDs in telemedicine applications. Furthermore, it presents the challenges and open issues regarding patient prioritisation in telemedicine. The findings of this study are as follows: (1) The limitations and problems of existing patients' prioritisation with MCDs are presented and emphasised. (2) Based on the analysis of the academic literature, an accurate solution for remote prioritisation in a large scale of patients with MCDs was not presented. (3) There is an essential need to produce a new multiple-criteria decision-making theory to address the current problems in the prioritisation of patients with MCDs.
  11. Mohsin AH, Zaidan AA, Zaidan BB, Mohammed KI, Albahri OS, Albahri AS, et al.
    Multimed Tools Appl, 2021;80(9):14137-14161.
    PMID: 33519293 DOI: 10.1007/s11042-020-10284-y
    Secure updating and sharing for large amounts of healthcare information (such as medical data on coronavirus disease 2019 [COVID-19]) in efficient and secure transmission are important but challenging in communication channels amongst hospitals. In particular, in addressing the above challenges, two issues are faced, namely, those related to confidentiality and integrity of their health data and to network failure that may cause concerns about data availability. To the authors' knowledge, no study provides secure updating and sharing solution for large amounts of healthcare information in communication channels amongst hospitals. Therefore, this study proposes and discusses a novel steganography-based blockchain method in the spatial domain as a solution. The novelty of the proposed method is the removal and addition of new particles in the particle swarm optimisation (PSO) algorithm. In addition, hash function can hide secret medical COVID-19 data in hospital databases whilst providing confidentiality with high embedding capacity and high image quality. Moreover, stego images with hash data and blockchain technology are used in updating and sharing medical COVID-19 data between hospitals in the network to improve the level of confidentiality and protect the integrity of medical COVID-19 data in grey-scale images, achieve data availability if any connection failure occurs in a single point of the network and eliminate the central point (third party) in the network during transmission. The proposed method is discussed in three stages. Firstly, the pre-hiding stage estimates the embedding capacity of each host image. Secondly, the secret COVID-19 data hiding stage uses PSO algorithm and hash function. Thirdly, the transmission stage transfers the stego images based on blockchain technology and updates all nodes (hospitals) in the network. As proof of concept for the case study, the authors adopted the latest COVID-19 research published in the Computer Methods and Programs in Biomedicine journal, which presents a rescue framework within hospitals for the storage and transfusion of the best convalescent plasma to the most critical patients with COVID-19 on the basis of biological requirements. The validation and evaluation of the proposed method are discussed.
  12. Kalid N, Zaidan AA, Zaidan BB, Salman OH, Hashim M, Albahri OS, et al.
    J Med Syst, 2018 Mar 02;42(4):69.
    PMID: 29500683 DOI: 10.1007/s10916-018-0916-7
    This paper presents a new approach to prioritize "Large-scale Data" of patients with chronic heart diseases by using body sensors and communication technology during disasters and peak seasons. An evaluation matrix is used for emergency evaluation and large-scale data scoring of patients with chronic heart diseases in telemedicine environment. However, one major problem in the emergency evaluation of these patients is establishing a reasonable threshold for patients with the most and least critical conditions. This threshold can be used to detect the highest and lowest priority levels when all the scores of patients are identical during disasters and peak seasons. A practical study was performed on 500 patients with chronic heart diseases and different symptoms, and their emergency levels were evaluated based on four main measurements: electrocardiogram, oxygen saturation sensor, blood pressure monitoring, and non-sensory measurement tool, namely, text frame. Data alignment was conducted for the raw data and decision-making matrix by converting each extracted feature into an integer. This integer represents their state in the triage level based on medical guidelines to determine the features from different sources in a platform. The patients were then scored based on a decision matrix by using multi-criteria decision-making techniques, namely, integrated multi-layer for analytic hierarchy process (MLAHP) and technique for order performance by similarity to ideal solution (TOPSIS). For subjective validation, cardiologists were consulted to confirm the ranking results. For objective validation, mean ± standard deviation was computed to check the accuracy of the systematic ranking. This study provides scenarios and checklist benchmarking to evaluate the proposed and existing prioritization methods. Experimental results revealed the following. (1) The integration of TOPSIS and MLAHP effectively and systematically solved the patient settings on triage and prioritization problems. (2) In subjective validation, the first five patients assigned to the doctors were the most urgent cases that required the highest priority, whereas the last five patients were the least urgent cases and were given the lowest priority. In objective validation, scores significantly differed between the groups, indicating that the ranking results were identical. (3) For the first, second, and third scenarios, the proposed method exhibited an advantage over the benchmark method with percentages of 40%, 60%, and 100%, respectively. In conclusion, patients with the most and least urgent cases received the highest and lowest priority levels, respectively.
  13. Albahri OS, Albahri AS, Mohammed KI, Zaidan AA, Zaidan BB, Hashim M, et al.
    J Med Syst, 2018 Mar 22;42(5):80.
    PMID: 29564649 DOI: 10.1007/s10916-018-0943-4
    The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.
  14. Alamoodi AH, Albahri OS, Zaidan AA, Alsattar HA, Zaidan BB, Albahri AS
    Neural Comput Appl, 2023;35(8):6185-6196.
    PMID: 36415285 DOI: 10.1007/s00521-022-07998-5
    This research proposes a novel mobile health-based hospital selection framework for remote patients with multi-chronic diseases based on wearable body medical sensors that use the Internet of Things. The proposed framework uses two powerful multi-criteria decision-making (MCDM) methods, namely fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score method for criteria weighting and hospital ranking. The development of both methods is based on a Q-rung orthopair fuzzy environment to address the uncertainty issues associated with the case study in this research. The other MCDM issues of multiple criteria, various levels of significance and data variation are also addressed. The proposed framework comprises two main phases, namely identification and development. The first phase discusses the telemedicine architecture selected, patient dataset used and decision matrix integrated. The development phase discusses criteria weighting by q-ROFWZIC and hospital ranking by q-ROFDOSM and their sub-associated processes. Weighting results by q-ROFWZIC indicate that the time of arrival criterion is the most significant across all experimental scenarios with (0.1837, 0.183, 0.230, 0.276, 0.335) for (q = 1, 3, 5, 7, 10), respectively. Ranking results indicate that Hospital (H-4) is the best-ranked hospital in all experimental scenarios. Both methods were evaluated based on systematic ranking and sensitivity analysis, thereby confirming the validity of the proposed framework.
  15. Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, Albahri OS, Albahri AS, et al.
    J Med Syst, 2018 Sep 19;42(11):204.
    PMID: 30232632 DOI: 10.1007/s10916-018-1064-9
    This study aims to systematically review prior research on the evaluation and benchmarking of automated acute leukaemia classification tasks. The review depends on three reliable search engines: ScienceDirect, Web of Science and IEEE Xplore. A research taxonomy developed for the review considers a wide perspective for automated detection and classification of acute leukaemia research and reflects the usage trends in the evaluation criteria in this field. The developed taxonomy consists of three main research directions in this domain. The taxonomy involves two phases. The first phase includes all three research directions. The second one demonstrates all the criteria used for evaluating acute leukaemia classification. The final set of studies includes 83 investigations, most of which focused on enhancing the accuracy and performance of detection and classification through proposed methods or systems. Few efforts were made to undertake the evaluation issues. According to the final set of articles, three groups of articles represented the main research directions in this domain: 56 articles highlighted the proposed methods, 22 articles involved proposals for system development and 5 papers centred on evaluation and comparison. The other taxonomy side included 16 main and sub-evaluation and benchmarking criteria. This review highlights three serious issues in the evaluation and benchmarking of multiclass classification of acute leukaemia, namely, conflicting criteria, evaluation criteria and criteria importance. It also determines the weakness of benchmarking tools. To solve these issues, multicriteria decision-making (MCDM) analysis techniques were proposed as effective recommended solutions in the methodological aspect. This methodological aspect involves a proposed decision support system based on MCDM for evaluation and benchmarking to select suitable multiclass classification models for acute leukaemia. The said support system is examined and has three sequential phases. Phase One presents the identification procedure and process for establishing a decision matrix based on a crossover of evaluation criteria and acute leukaemia multiclass classification models. Phase Two describes the decision matrix development for the selection of acute leukaemia classification models based on the integrated Best and worst method (BWM) and VIKOR. Phase Three entails the validation of the proposed system.
  16. Mohsin AH, Zaidan AA, Zaidan BB, Ariffin SAB, Albahri OS, Albahri AS, et al.
    J Med Syst, 2018 Oct 29;42(12):245.
    PMID: 30374820 DOI: 10.1007/s10916-018-1103-6
    In real-time medical systems, the role of biometric technology is significant in authentication systems because it is used in verifying the identity of people through their biometric features. The biometric technology provides crucial properties for biometric features that can support the process of personal identification. The storage of biometric template within a central database makes it vulnerable to attack which can also occur during data transmission. Therefore, an alternative mechanism of protection becomes important to develop. On this basis, this study focuses on providing a detailed analysis of the extant literature (2013-2018) to identify the taxonomy and research distribution. Furthermore, this study also seeks to ascertain the challenges and motivations associated with biometric steganography in real-time medical systems to provide recommendations that can enhance the efficient use of real-time medical systems in biometric steganography and its applications. A review of articles on human biometric steganography in real-time medical systems obtained from three main databases (IEEE Xplore, ScienceDirect and Web of Science) is conducted according to an appropriate review protocol. Then, 41 related articles are selected by using exclusion and inclusion criteria. Majority of the studies reviewed had been conducted in the field of data-hiding (particularly steganography) technologies. In this review, various steganographic methods that have been applied in different human biometrics are investigated. Thereafter, these methods are categorised according to taxonomy, and the results are presented on the basis of human steganography biometric real-time medical systems, testing and evaluation methods, significance of use and applications and techniques. Finally, recommendations on how the challenges associated with data hiding can be addressed are provided to enhance the efficiency of using biometric information processed in any authentication real-time medical system. These recommendations are expected to be immensely helpful to developers, company users and researchers.
  17. Alsalem MA, Zaidan AA, Zaidan BB, Albahri OS, Alamoodi AH, Albahri AS, et al.
    J Med Syst, 2019 Jun 01;43(7):212.
    PMID: 31154550 DOI: 10.1007/s10916-019-1338-x
    This paper aims to assist the administration departments of medical organisations in making the right decision on selecting a suitable multiclass classification model for acute leukaemia. In this paper, we proposed a framework that will aid these departments in evaluating, benchmarking and ranking available multiclass classification models for the selection of the best one. Medical organisations have continuously faced evaluation and benchmarking challenges in such endeavour, especially when no single model is superior. Moreover, the improper selection of multiclass classification for acute leukaemia model may be costly for medical organisations. For example, when a patient dies, one such organisation will be legally or financially sued for incidents in which the model fails to fulfil its desired outcome. With regard to evaluation and benchmarking, multiclass classification models are challenging processes due to multiple evaluation and conflicting criteria. This study structured a decision matrix (DM) based on the crossover of 2 groups of multi-evaluation criteria and 22 multiclass classification models. The matrix was then evaluated with datasets comprising 72 samples of acute leukaemia, which include 5327 gens. Subsequently, multi-criteria decision-making (MCDM) techniques are used in the benchmarking and ranking of multiclass classification models. The MCDM used techniques that include the integrated BWM and VIKOR. BWM has been applied for the weight calculations of evaluation criteria, whereas VIKOR has been used to benchmark and rank classification models. VIKOR has also been employed in two decision-making contexts: individual and group decision making and internal and external group aggregation. Results showed the following: (1) the integration of BWM and VIKOR is effective at solving the benchmarking/selection problems of multiclass classification models. (2) The ranks of classification models obtained from internal and external VIKOR group decision making were almost the same, and the best multiclass classification model based on the two was 'Bayes. Naive Byes Updateable' and the worst one was 'Trees.LMT'. (3) Among the scores of groups in the objective validation, significant differences were identified, which indicated that the ranking results of internal and external VIKOR group decision making were valid.
  18. Mohammed TJ, Albahri AS, Zaidan AA, Albahri OS, Al-Obaidi JR, Zaidan BB, et al.
    Appl Intell (Dordr), 2021;51(5):2956-2987.
    PMID: 34764579 DOI: 10.1007/s10489-020-02169-2
    As coronavirus disease 2019 (COVID-19) spreads across the world, the transfusion of efficient convalescent plasma (CP) to the most critical patients can be the primary approach to preventing the virus spread and treating the disease, and this strategy is considered as an intelligent computing concern. In providing an automated intelligent computing solution to select the appropriate CP for the most critical patients with COVID-19, two challenges aspects are bound to be faced: (1) distributed hospital management aspects (including scalability and management issues for prioritising COVID-19 patients and donors simultaneously), and (2) technical aspects (including the lack of COVID-19 dataset availability of patients and donors and an accurate matching process amongst them considering all blood types). Based on previous reports, no study has provided a solution for CP-transfusion-rescue intelligent framework during this pandemic that has addressed said challenges and issues. This study aimed to propose a novel CP-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on the matching component process to provide an efficient CP from eligible donors to the most critical patients using multicriteria decision-making (MCDM) methods. A dataset, including COVID-19 patients/donors that have met the important criteria in the virology field, must be augmented to improve the developed framework. Four consecutive phases conclude the methodology. In the first phase, a new COVID-19 dataset is generated on the basis of medical-reference ranges by specialised experts in the virology field. The simulation data are classified into 80 patients and 80 donors on the basis of the five biomarker criteria with four blood types (i.e., A, B, AB, and O) and produced for COVID-19 case study. In the second phase, the identification scenario of patient/donor distributions across four centralised/decentralised telemedicine hospitals is identified 'as a proof of concept'. In the third phase, three stages are conducted to develop a CP-transfusion-rescue framework. In the first stage, two decision matrices are adopted and developed on the basis of the five 'serological/protein biomarker' criteria for the prioritisation of patient/donor lists. In the second stage, MCDM techniques are analysed to adopt individual and group decision making based on integrated AHP-TOPSIS as suitable methods. In the third stage, the intelligent matching components amongst patients/donors are developed on the basis of four distinct rules. In the final phase, the guideline of the objective validation steps is reported. The intelligent framework implies the benefits and strength weights of biomarker criteria to the priority configuration results and can obtain efficient CPs for the most critical patients. The execution of matching components possesses the scalability and balancing presentation within centralised/decentralised hospitals. The objective validation results indicate that the ranking is valid.
  19. Alamoodi AH, Zughoul O, David D, Garfan S, Pamucar D, Albahri OS, et al.
    J Med Syst, 2024 Aug 31;48(1):81.
    PMID: 39214943 DOI: 10.1007/s10916-024-02090-y
    Artificial intelligence (AI) has become a crucial element of modern technology, especially in the healthcare sector, which is apparent given the continuous development of large language models (LLMs), which are utilized in various domains, including medical beings. However, when it comes to using these LLMs for the medical domain, there's a need for an evaluation platform to determine their suitability and drive future development efforts. Towards that end, this study aims to address this concern by developing a comprehensive Multi-Criteria Decision Making (MCDM) approach that is specifically designed to evaluate medical LLMs. The success of AI, particularly LLMs, in the healthcare domain, depends on their efficacy, safety, and ethical compliance. Therefore, it is essential to have a robust evaluation framework for their integration into medical contexts. This study proposes using the Fuzzy-Weighted Zero-InConsistency (FWZIC) method extended to p, q-quasirung orthopair fuzzy set (p, q-QROFS) for weighing evaluation criteria. This extension enables the handling of uncertainties inherent in medical decision-making processes. The approach accommodates the imprecise and multifaceted nature of real-world medical data and criteria by incorporating fuzzy logic principles. The MultiAtributive Ideal-Real Comparative Analysis (MAIRCA) method is employed for the assessment of medical LLMs utilized in the case study of this research. The results of this research revealed that "Medical Relation Extraction" criteria with its sub-levels had more importance with (0.504) than "Clinical Concept Extraction" with (0.495). For the LLMs evaluated, out of 6 alternatives, ( A 4 ) "GatorTron S 10B" had the 1st rank as compared to ( A 1 ) "GatorTron 90B" had the 6th rank. The implications of this study extend beyond academic discourse, directly impacting healthcare practices and patient outcomes. The proposed framework can help healthcare professionals make more informed decisions regarding the adoption and utilization of LLMs in medical settings.
  20. Alsalem MA, Albahri OS, Zaidan AA, Al-Obaidi JR, Alnoor A, Alamoodi AH, et al.
    Appl Intell (Dordr), 2022;52(9):9676-9700.
    PMID: 35035091 DOI: 10.1007/s10489-021-02813-5
    Mesenchymal stem cells (MSCs) have shown promising ability to treat critical cases of coronavirus disease 2019 (COVID-19) by regenerating lung cells and reducing immune system overreaction. However, two main challenges need to be addressed first before MSCs can be efficiently transfused to the most critical cases of COVID-19. First is the selection of suitable MSC sources that can meet the standards of stem cell criteria. Second is differentiating COVID-19 patients into different emergency levels automatically and prioritising them in each emergency level. This study presents an efficient real-time MSC transfusion framework based on multicriteria decision-making(MCDM) methods. In the methodology, the testing phase represents the ability to adhere to plastic surfaces, the upregulation and downregulation of specific surface protein markers and finally the ability to differentiate into different kinds of cells. In the development phase, firstly, two scenarios of an augmented dataset based on the medical perspective are generated to produce 80 patients with different emergency levels. Secondly, an automated triage algorithm based on a formal medical guideline is proposed for real-time monitoring of COVID-19 patients with different emergency levels (i.e. mild, moderate, severe and critical) considering the improvement and deterioration procedures from one level to another. Thirdly, a unique decision matrix for each triage level (except mild) is constructed on the basis of the intersection between the evaluation criteria of each emergency level and list of COVID-19 patients. Thereafter, MCDM methods (i.e. analytic hierarchy process [AHP] and vlsekriterijumska optimizcija i kaompromisno resenje [VIKOR]) are integrated to assign subjective weights for the evaluation criteria within each triage level and then prioritise the COVID-19 patients on the basis of individual and group decision-making(GDM) contexts. Results show that: (1) in both scenarios, the proposed algorithm effectively classified the patients into four emergency levels, including mild, moderate, severe and critical, taking into consideration the improvement and deterioration cases. (2) On the basis of experts' perspectives, clear differences in most individual prioritisations for patients with different emergency levels in both scenarios were found. (3) In both scenarios, COVID-19 patients were prioritised identically between the internal and external group VIKOR. During the evaluation, the statistical objective method indicated that the patient prioritisations underwent systematic ranking. Moreover, comparison analysis with previous work proved the efficiency of the proposed framework. Thus, the real-time MSC transfusion for COVID-19 patients can follow the order achieved in the group VIKOR results.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links