Displaying all 8 publications

Abstract:
Sort:
  1. Sookhak M, Akhunzada A, Gani A, Khurram Khan M, Anuar NB
    ScientificWorldJournal, 2014;2014:269357.
    PMID: 25121114 DOI: 10.1155/2014/269357
    Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server.
  2. Shamim A, Khan AA, Qureshi MA, Rafique H, Akhunzada A
    PMID: 34639652 DOI: 10.3390/ijerph181910352
    Traditional taxi services have now been transformed into e-hailing applications (EHA) such as Uber, Careem, Hailo, and Grab Car globally due to the proliferation of smartphone technology. On the one hand, these applications provide transport facilities. On the other hand, users are facing multiple issues in the adoption of EHAs. Despite problems, EHAs are still widely adopted globally. However, a sparse amount of research has been conducted related to EHAs, particular in regards to exploring the significant factors of intention behind using EHAs Therefore, there is a need to identify influencing factors that have a great impact on the adoption and acceptance of these applications. Hence, this research aims to present an empirical study on the factors influencing customers' intentions towards EHAs. The Technology Acceptance Model (TAM) was extended with four external factors: perceived mobility value, effort expectancy, perceived locational accuracy, and perceived price. A questionnaire was developed for the measurement of these factors. A survey was conducted with 211 users of EHAs to collect data. Structural equation modeling (SEM) was used to analyze the collected data. The results of this study exposed that perceived usefulness, perceived price, and perceived ease of use affect behavior intention to use EHAs. Furthermore, perceived ease of use was impacted by effort expectancy, perceived locational accuracy, and perceived mobility. The findings of the study provide a foundation to develop new guidelines for such applications that will be beneficial for developers and designers of these applications.
  3. Liaqat M, Gani A, Anisi MH, Ab Hamid SH, Akhunzada A, Khan MK, et al.
    PLoS One, 2016 Sep 22;11(9):e0161340.
    PMID: 27658194 DOI: 10.1371/journal.pone.0161340
    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results.
  4. Abdelaziz A, Fong AT, Gani A, Garba U, Khan S, Akhunzada A, et al.
    PLoS One, 2017;12(4):e0174715.
    PMID: 28384312 DOI: 10.1371/journal.pone.0174715
    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.
  5. Khan IA, Shah SAA, Akhunzada A, Gani A, Rodrigues JJPC
    Sensors (Basel), 2021 Nov 09;21(22).
    PMID: 34833507 DOI: 10.3390/s21227431
    Effective communication in vehicular networks depends on the scheduling of wireless channel resources. There are two types of channel resource scheduling in Release 14 of the 3GPP, i.e., (1) controlled by eNodeB and (2) a distributed scheduling carried out by every vehicle, known as Autonomous Resource Selection (ARS). The most suitable resource scheduling for vehicle safety applications is the ARS mechanism. ARS includes (a) counter selection (i.e., specifying the number of subsequent transmissions) and (b) resource reselection (specifying the reuse of the same resource after counter expiry). ARS is a decentralized approach for resource selection. Therefore, resource collisions can occur during the initial selection, where multiple vehicles might select the same resource, hence resulting in packet loss. ARS is not adaptive towards vehicle density and employs a uniform random selection probability approach for counter selection and reselection. As a result, it can prevent some vehicles from transmitting in a congested vehicular network. To this end, the paper presents Truly Autonomous Resource Selection (TARS) for vehicular networks. TARS considers resource allocation as a problem of locally detecting the selected resources at neighbor vehicles to avoid resource collisions. The paper also models the behavior of counter selection and resource block reselection on resource collisions using the Discrete Time Markov Chain (DTMC). Observation of the model is used to propose a fair policy of counter selection and resource reselection in ARS. The simulation of the proposed TARS mechanism showed better performance in terms of resource collision probability and the packet delivery ratio when compared with the LTE Mode 4 standard and with a competing approach proposed by Jianhua He et al.
  6. Saeed K, Khalil W, Al-Shamayleh AS, Ahmad I, Akhunzada A, ALharethi SZ, et al.
    Sensors (Basel), 2023 Mar 11;23(6).
    PMID: 36991755 DOI: 10.3390/s23063044
    The exponentially growing concern of cyber-attacks on extremely dense underwater sensor networks (UWSNs) and the evolution of UWSNs digital threat landscape has brought novel research challenges and issues. Primarily, varied protocol evaluation under advanced persistent threats is now becoming indispensable yet very challenging. This research implements an active attack in the Adaptive Mobility of Courier Nodes in Threshold-optimized Depth-based Routing (AMCTD) protocol. A variety of attacker nodes were employed in diverse scenarios to thoroughly assess the performance of AMCTD protocol. The protocol was exhaustively evaluated both with and without active attacks with benchmark evaluation metrics such as end-to-end delay, throughput, transmission loss, number of active nodes and energy tax. The preliminary research findings show that active attack drastically lowers the AMCTD protocol's performance (i.e., active attack reduces the number of active nodes by up to 10%, reduces throughput by up to 6%, increases transmission loss by 7%, raises energy tax by 25%, and increases end-to-end delay by 20%).
  7. Iqbal J, Ahmad RB, Khan M, Fazal-E-Amin, Alyahya S, Nizam Nasir MH, et al.
    PLoS One, 2020;15(4):e0229785.
    PMID: 32271783 DOI: 10.1371/journal.pone.0229785
    Software development outsourcing is becoming more and more famous because of the advantages like cost abatement, process enhancement, and coping with the scarcity of needed resources. Studies confirm that unfortunately a large proportion of the software development outsourcing projects fails to realize anticipated benefits. Investigations into the failures of such projects divulge that in several cases software development outsourcing projects are failed because of the issues that are associated with requirements engineering process. The objective of this study is the identification and the ranking of the commonly occurring issues of the requirements engineering process in the case of software development outsourcing. For this purpose, contemporary literature has been assessed rigorously, issues faced by practitioners have been identified and three questionnaire surveys have been organized by involving experienced software development outsourcing practitioners. The Delphi technique, cut-off value method and 50% rule have also been employed. The study explores 150 issues (129 issues from literature and 21 from industry) of requirements engineering process for software development outsourcing, groups the 150 issues into 7 identified categories and then extricates 43 customarily or commonly arising issues from the 150 issues. Founded on 'frequency of occurrence' the 43 customarily arising issues have been ranked with respect to respective categories (category-wise ranking) and with respect to all the categories (overall ranking). Categories of the customarily arising issues have also been ranked. The issues' identification and ranking contribute to design proactive software project management plan for dealing with software development outsourcing failures and attaining conjectured benefits of the software development outsourcing.
  8. Aqra I, Herawan T, Abdul Ghani N, Akhunzada A, Ali A, Bin Razali R, et al.
    PLoS One, 2018;13(1):e0179703.
    PMID: 29351287 DOI: 10.1371/journal.pone.0179703
    Designing an efficient association rule mining (ARM) algorithm for multilevel knowledge-based transactional databases that is appropriate for real-world deployments is of paramount concern. However, dynamic decision making that needs to modify the threshold either to minimize or maximize the output knowledge certainly necessitates the extant state-of-the-art algorithms to rescan the entire database. Subsequently, the process incurs heavy computation cost and is not feasible for real-time applications. The paper addresses efficiently the problem of threshold dynamic updation for a given purpose. The paper contributes by presenting a novel ARM approach that creates an intermediate itemset and applies a threshold to extract categorical frequent itemsets with diverse threshold values. Thus, improving the overall efficiency as we no longer needs to scan the whole database. After the entire itemset is built, we are able to obtain real support without the need of rebuilding the itemset (e.g. Itemset list is intersected to obtain the actual support). Moreover, the algorithm supports to extract many frequent itemsets according to a pre-determined minimum support with an independent purpose. Additionally, the experimental results of our proposed approach demonstrate the capability to be deployed in any mining system in a fully parallel mode; consequently, increasing the efficiency of the real-time association rules discovery process. The proposed approach outperforms the extant state-of-the-art and shows promising results that reduce computation cost, increase accuracy, and produce all possible itemsets.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links