Displaying all 3 publications

Abstract:
Sort:
  1. Amin NA, Akhtar J, Rai HK
    Water Sci Technol, 2011;63(8):1651-6.
    PMID: 21866764
    The performances of HZSM-5 and transition metal-loaded HZSM-5 (Mn, Cu, Fe, Ti) catalysts during catalytic ozonation of phenol have been investigated. It was observed the performance order for removal of phenol and COD was Mn/HZSM-5 > Fe/HZSM-5 > Cu/HZSM-5 > Ti/HZSM-5 > HZSM-5. The presence of metals on HZSM-5 enhanced the phenol removal capability of HZSM-5. Mn loading on HZSM-5 was optimized due to its high phenol removal capability amongst metal-loaded HZSM-5 catalysts. Experimental results suggested that low amount of Mn loading on HZSM-5 was sufficient for HZSM-5 to act as catalyst and adsorbent. A maximum of 95.8 wt% phenols and 70.2 wt% COD were removed over 2 wt% Mn/HZSM-5 in 120 min. It was supposed that transition metals mainly acted as ozone decomposers due to their multiple oxidation states that enhanced the ozonation of phenol.
  2. Akhtar J, Idris A, Abd Aziz R
    Appl Microbiol Biotechnol, 2014 Feb;98(3):987-1000.
    PMID: 24292125 DOI: 10.1007/s00253-013-5319-6
    Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF - a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail.
  3. Ali A, Akhtar J, Ahmad U, Basheer AS, Jaiswal N, Jahan A
    PMID: 36374840 DOI: 10.1615/CritRevTherDrugCarrierSyst.2022039241
    Colorectal cancer (CRC) is the second most common cause of cancer related deaths in the United States. However, more than half of all incidence and mortality are caused by risk factors such as smoking, unhealthy diet, excessive alcohol consumption, inactivity, and excess weight, and thus can be protected. CRC morbidity and mortality can also be reduced by proper screening and monitoring. Over the last few years the amalgamation of nanotechnology with healthcare system has brought about the potential to administer the delivery of certain therapeutic drugs to cancer cells without affecting normal tissues. Recent strategies combine the diagnostic and therapeutic approaches to improve the overall performance of cancer nanomedicines. Targeted cancer nanotherapeutics provides many more opportunities for the selective detection of toxic chemicals within cancer cells. The distinctive features of nanoparticles, such as their small size, large surface to volume ratio, and the ability of nanoparticles to achieve several interactions of ligands at surface, offer great benefits of nanomedicines to treat various types of cancers. This review highlights the molecular mechanisms of colorectal carcinogenesis and discusses various key concepts in the development of nanotherapeutics targeted for CRC treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links