Affiliations 

  • 1 Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran. [email protected]
  • 2 Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
  • 3 Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
Mikrochim Acta, 2019 02 01;186(3):131.
PMID: 30707373 DOI: 10.1007/s00604-019-3246-7

Abstract

Different types of hybrid nanocomposites were prepared from a copper-based metal-organic framework (MOF-199) and graphene (Gr) or fullerene (Fl). The porosity and quality of the nanocomposites were studied by scanning electron microscopy, transmission electron microscopy and BET surface area analysis. The nanocomposites are shown to be viable sorbents for the dispersive micro solid phase extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. This is due to (a) the presence of MOF-199 which leads to improved adsorption capacity, and (b) the presence of Gr or Fl on the surface of MOF-199 which enhances the interaction with PAHs. Specifically, acenaphthene, anthracene, benz[a]anthracene, fluorene, naphthalene, 2-methylnaphthalene, and pyrene were studied. A comparison of the sorbents shows MOF-199/Gr to possess the highest adsorption affinity and to be most durable, probably a result of the high porosity of graphene. Following desorption with acetonitrile, the PAHs were quantified by GC with FID detection. Under the optimum conditions, limits of detection (at an S/N ratio of 3) range from 3 to 10 pg mL-1, and the analytical ranges are linear at 0.01-100 ng mL-1 of PAHs. The relative standard deviations for five replicates at two spiking levels (0.03 and 50 ng mL-1) range from 5.0 to 7.4%. The applicability of this method was confirmed by analyzing spiked real water samples, and recoveries are between 91.9 and 99.5%. Graphical abstract Different types of the hybrid nanocomposites of the copper-based metal-organic framework MOF-199 with graphene or fullerene were synthesized and used as sorbent for the dispersive micro solid phase extraction of polycyclic aromatic hydrocarbons in environmental water samples.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications