Affiliations 

  • 1 Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia. [email protected]
  • 2 Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia. [email protected]
  • 3 Chemistry Department, Faculty of Science, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia. [email protected]
Nanomaterials (Basel), 2018 Jul 10;8(7).
PMID: 29996468 DOI: 10.3390/nano8070514

Abstract

The conventional synthesis route of nanostructured titania-silica (Ti-SiNS) based on sol-gel requires the use of a surfactant-type template that suffers from hazardous risks, environmental concerns, and a tedious stepwise process. Alternatively, biomaterials have been introduced as an indirect template, but still required for pre-suspended scaffold structures, which hinder their practical application. Herein, we report an easy and industrially viable direct-continuous strategy for the preparation of Ti-SiNS from nanostructured-silica (SiNS) using a hydrolyzed rice starch template. This strategy fits into the conventional industrial process flow, as it allows starch to be used directly in time-effective and less complicated steps, with the potential to upscale. The formation of Ti-SiNS is mainly attributed to Ti attachment in the SiNS frameworks after the polycondensation of the sol-gel composition under acidic-media. The SiNS had pseudo-spherical morphology (nanoparticles with the size of 13 to 22 nm), short order crystal structure (amorphous) and high surface area (538.74 m²·g−1). The functionalized SiNS into Ti-SiNS delivered considerable catalytic activity for epoxidation of 1-naphtol into 1,4-naphthoquinone. The described direct-continuous preparation shows great promise for a cheap, green, and efficient synthesis of Ti-SiNS for advanced applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.