The importance of house fly (Musca domestica L) wings in mechanical transmission of bacteria was studied. A droplet of phosphate-buffered saline containing Vibrio cholerae was rolled along one wing of each house fly. None adhered to the wings but small proportions of the bacterium were isolated from about half the wings. Vibrio cholerae was spread onto the ventral wing surfaces of each unconscious house fly which then was placed inside a bottle. When it regained consciousness, the types of activity it performed over five minutes were noted before the house fly was killed and the bacteria on its wings numerated. Control were house flies killed before inoculation. The proportion of house flies with bacteria on their wings and the mean number of bacteria remaining were significantly less on live house flies than killed controls. Among the live house flies, bacteria were detected on fewer house flies which flew (25%) than those which did not fly (81%). In addition, the mean number of bacteria on the former was significantly less than the latter (5 against 780 colonies). However, both these parameters were not significantly different between the group which performed and the group which did not perform wing grooming; takeoff and alighting over short distances, and somersaulting. Wings of unconscious house flies tethered by their thoraxes were inoculated with V. cholerae. After regaining consciousness, the house flies were allowed to move their wings in flight motions for up to 30 seconds. Small proportions of bacteria remained on all the house flies. House flies were placed in a chamber containing a liquid bait spiked with V. cholerae. After two hours, 10 were removed sequentially and cultured for V. cholerae. The bacterium was isolated from four house flies: two from the legs, and two others from their bodies minus legs and wings. In conclusion, house fly wings do not play an important role in mechanical transmission of bacteria suspended in a non-adhering liquid medium because of the low transfer rate of the bacteria to the wings and poor retention of bacteria on the wings during normal house fly activities.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.