Affiliations 

  • 1 Pharmacology and Toxicology Research Laboratory, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Puncak Alam, Selangor, Malaysia. [email protected]
Curr Med Chem, 2012 Aug 16.
PMID: 22934758

Abstract

Gestational diabetes mellitus (GDM) is a common complication during pregnancy. Metabolic changes in GDM affect fetal development and fetal glucose homeostasis. Several complications of diabetes are related to increased intracellular oxidative stress where prooxidants exceed antioxidant capacity. The present study was initiated to evaluate the effects of nicotinamide on CD4+CD25+ regulatory T cells (Tregs), proliferation of splenocytes, production of reactive oxygen species (ROS) by neutrophils and serum glucose levels. Changes in mRNA levels of two antioxidant genes in liver, viz, superoxide dismutase (SOD1) and catalase (CAT) were quantified with real-time PCR (QRT-PCR). Nicotinamide (50, 100 and 200 mg/kg) was supplemented p.o. to pregnant diabetic rats from days 6 through 20 of gestation. The highest dose enhanced expression of Tregs and increased splenocytes proliferation in both resting and lipopolysaccharide (LPS)-stimulated cells. Oxidative burst activity of neutrophils in response to phorbol myristate acetate (PMA), N-formyl-methionyl-leucyl-phenylalanine (FMLP) or E. coli activation was reduced. mRNA expressions of superoxide dismutase (SOD) and catalase (CAT) genes were upregulated by nicotinamide. In summary, nicotinamide boosted the immune system through stimulation of adaptive immune cells with enhancement of antioxidant defences and reduced production of ROS. Serum glucose level was normalised by nicotinamide (200 mg/kg). These findings provide evidence for usage of nicotinamide as a supplement or as adjunct to therapeutic agents in gestational diabetes and in pregnant individuals with weakened immune systems.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.