Asthma is a global public health problem and the most common chronic disease among children. The factors associated with the condition are diverse, and environmental factors appear to be the leading cause of asthma exacerbation and its worsening disease burden. However, it remains unknown how changes in the environment affect asthma over time, and how temporal or environmental factors predict asthma events. The methodologies for forecasting asthma and other similar chronic conditions are not comprehensively documented anywhere to account for semistructured noncausal forecasting approaches. This paper highlights and discusses practical issues associated with asthma and the environment, and suggests possible approaches for developing decision-making tools in the form of semistructured black-box models, which is relatively new for asthma. Two statistical methods which can potentially be used in predictive modeling and health forecasting for both anticipated and peak events are suggested. Importantly, this paper attempts to bridge the areas of epidemiology, environmental medicine and exposure risks, and health services provision. The ideas discussed herein will support the development and implementation of early warning systems for chronic respiratory conditions in large populations, and ultimately lead to better decision-making tools for improving health service delivery.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.