Affiliations 

  • 1 School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
  • 2 School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Medical Advancement for Better Quality of Life Impact Lab, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
  • 3 School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Medical Advancement for Better Quality of Life Impact Lab, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia. Electronic address: [email protected]
J Diabetes Complications, 2023 Nov;37(11):108629.
PMID: 37866274 DOI: 10.1016/j.jdiacomp.2023.108629

Abstract

Alzheimer Associated Diabetes Mellitus, commonly known as Type 3 Diabetes Mellitus (T3DM) is a distinct subtype of diabetes with a pronounced association with Alzheimer's disease (AD). Insulin resistance serves as a pivotal link between these two conditions, leading to diminished insulin sensitivity, hyperglycemia, and impaired glucose uptake. The brain, a vital organ in AD context, is also significantly impacted by insulin resistance, resulting in energy deficits and neuronal damage, which are hallmark features of the neurodegenerative disorder. To pave the way for potential therapeutic interventions targeting the insulin resistance pathway, it is crucial to comprehend the intricate pathophysiology of T3DM and identify the overlapped features between diabetes and AD. This comprehensive review article aims to explore various pathway such as AMPK, PPARγ, cAMP and P13K/Akt pathway as potential target for management of T3DM. Through the analysis of these complex mechanisms, our goal is to reveal their interdependencies and support the discovery of innovative therapeutic strategies. The review extensively discusses several promising pharmaceutical candidates that have demonstrated dual drug action mechanisms, addressing both peripheral and cerebral insulin resistance observed in T3DM. These candidates hold significant promise for restoring insulin function and mitigating the detrimental effects of insulin resistance on the brain. The exploration of these therapeutic options contributes to the development of innovative interventions that alleviate the burden of T3DM and enhance patient care.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.