Affiliations 

  • 1 Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
  • 2 Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India; DST-Mahamana Centre of Excellence in Climate Change Research, Banaras Hindu University, Varanasi, India. Electronic address: [email protected]
  • 3 Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
  • 4 Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
  • 5 Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi, Malaysia
  • 6 Centre for Education, Research and Innovation in Energy Environment, IMT Nord, Douai, France
Chemosphere, 2023 Nov;340:139943.
PMID: 37625487 DOI: 10.1016/j.chemosphere.2023.139943

Abstract

Abundance of fine particulate-bound 16 priority polycyclic aromatic hydrocarbons (PAHs) was investigated to ascertain its sources and potential carcinogenic health risks in Varanasi, India. The city represents a typical urban settlement of South Asia having particulate exposure manyfold higher than standard with reports of pollution induced mortalities and morbidities. Fine particulates (PM2.5) were monitored from October 2019 to May 2020, with 32% of monitoring days accounting ≥100 μgm-3 of PM2.5 concentration, frequently from November to January (99% of monitoring days). The concentration of 16 priority PAHs varied from 24.1 to 44.6 ngm-3 (mean: 33.1 ± 3.2 ngm-3) without much seasonal deviations. Both low (LMW, 56%) and high molecular weight (HMW, 44%) PAHs were abundant, with Fluoranthene (3.9 ± 0.4ngm-3) and Fluorene (3.5 ± 0.3ngm-3) emerged as most dominating PAHs. Concentration of Benzo(a)pyrene (B(a)P, 0.5 ± 0.1ngm-3) was lower than the national standard as it contributed 13% of total PAHs mass. Diagnostic ratios of PAH isomers indicate predominance of pyrogenic sources including emissions from biomass burning, and both from diesel and petrol-driven vehicles. Source apportionment using receptor model revealed similar observation of major PAHs contribution from biomass burning and fuel combustion (54% of source contribution) followed by coal combustion for residential heating and cooking purposes (44%). Potential toxicity of B[a]P equivalence ranged from 0.003 to 1.365 with cumulative toxicity of 2.13ngm-3. Among the PAH species, dibenzo[h]anthracene contributed maximum toxicity followed by B[a]P, together accounting 86% of PAH induced carcinogenicity. Incremental risk of developing cancer through lifetime exposure (ILCR) of PAHs was higher in children (3.3 × 10-4) with 56% contribution from LMW PAHs, primarily through ingestion and dermal contact. Adults in contrast, were more exposed to inhale airborne PAHs with cumulative ILCR of 2.2 × 10-4. However, ILCR to PM2.5 exposure is probably underestimated considering unaccounted metal abundance thus, require source-specific control measures.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.