Affiliations 

  • 1 School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address: [email protected]
  • 2 Rainforest Connection, 440 Cobia Drive, Suite 1902, Katy, TX 77494, USA
  • 3 Danau Girang Field Centre c/o Sabah Wildlife Department, Wisma Muis, Block B, 5th Floor, 88100 Kota Kinabalu, Sabah, Malaysia; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
  • 4 Danau Girang Field Centre c/o Sabah Wildlife Department, Wisma Muis, Block B, 5th Floor, 88100 Kota Kinabalu, Sabah, Malaysia; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • 5 Danau Girang Field Centre c/o Sabah Wildlife Department, Wisma Muis, Block B, 5th Floor, 88100 Kota Kinabalu, Sabah, Malaysia; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; Wildlife Health, Genetic and Forensic Laboratory, c/o Sabah Wildlife Department, Wisma Muis, Block B, 5th Floor, 88100 Kota Kinabalu, Sabah
  • 6 School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK; Centre for Climate Change and Planetary Health and Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; National University Health System, Singapore 117549, Singapore
Trends Parasitol, 2023 May;39(5):386-399.
PMID: 36842917 DOI: 10.1016/j.pt.2023.01.008

Abstract

Emerging infectious diseases continue to pose a significant burden on global public health, and there is a critical need to better understand transmission dynamics arising at the interface of human activity and wildlife habitats. Passive acoustic monitoring (PAM), more typically applied to questions of biodiversity and conservation, provides an opportunity to collect and analyse audio data in relative real time and at low cost. Acoustic methods are increasingly accessible, with the expansion of cloud-based computing, low-cost hardware, and machine learning approaches. Paired with purposeful experimental design, acoustic data can complement existing surveillance methods and provide a novel toolkit to investigate the key biological parameters and ecological interactions that underpin infectious disease epidemiology.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.