Our continuing research on the Aglaia genus (family Meliaceace) has led us to this first study on the chemical constituents of Aglaia lanuginose (bark). The dichloromethane extract from the bark of Aglaia lanuginose showed cytotoxicity against HL-60 leukaemia cell line (45% inhibition) at 20 µg/ml and was prioritised for further investigation. Repeated chromatography of the dichloromethane extract yielded the known dammarane triterpenes which were identified as cabralealactone (1), methyl eichlerianate (2), cabraleone (3), ocotillone (4), eichleriatone (5), eichlerianic acid (6) and shoreic acid (7) together with the known sterols, sitosterol (9) and stigmasterol (10). Another isolated compound was the aromatic 4-hydroxycinnamyl-acetate (8), which has not been reported to be present in a plant from the Meliaceae family. The structures of all the compounds were elucidated on the basis of spectroscopic methods (IR, MS and NMR). Cytotoxicity testing of 1-10 showed activity only for mixtures of (3, 4), and (5, 6).
Oil pollution remains a serious concern especially in Malaysia. Many strategies have been employed to overcome oil pollution. In this research, sago waste material abundantly found in Sarawak was used and chemically modified into an oil adsorbent . Sago waste cellulosic residues were modified using fatty acid derivatives. The capability of the chemically modified sago waste to absorb oil from aqueous solution was studied and compared with the untreated sago waste. The modified sago waste showed higher hydrophobicity than the untreated sago waste, implying that it is less affinity for water and also an excellent affinity for oil. This chemically modified sago waste would be the most suitable for applications where engine oil (i.e., Shell Helix HX5) is to be removed from an aqueous environment. The modified sago waste selectively absorbs the oil and remains on the surface and is to be removed when the application is complete.
The long term objective of this research is to look into the possibility of replacing soil strength parameters such as cohesion and angle of friction with electrical resistivity value for the purpose of computing among others, factor of safety in slopes or bearing capacity of soil. This paper however is limited to the investigation of correlation between electrical resistivity with some selected soil parameters. Electrical resistivity tests, using a basic multi meter, steel moulds and other related equipment, were conducted in the laboratory on soil samples with variations in soil type, compaction energy and moisture content. The samples consisted of predominantly clay, silt and sandy size particles and were compacted in a 100 x 100 mm square mould, while the corresponding electrical resistivity tests were carried out using the disc electrode method in accordance to BS 1377. The values of the electrical parameters such as voltage, current and resistance, with the corresponding value of soil parameters such as cohesion, angle of friction and moisture content, were measured and recorded. The results of the tests produced some initial crude relationships between electrical resistivity and the selected soil parameters. The strongest correlation between electrical resistivity and angle of internal friction, φ, was obtained from the clay size samples with R2 of 0.824, while the maximum correlation between electrical resistivity and moisture content again was obtained through the clay samples with R2 of 0.818. From the other results and graphs analyzed, some consistencies and specific trends of behaviour observed gave some early indications that a more detail and precise correlation between electrical resistivity and soil strength parameters could be very well possible in future.
In recent years image acquisition in close range photogrammetry relies on digital sensors such as digital cameras, video cameras, CCD cameras etc that are not specifically designed for photogrammetry. This study is performed to evaluate the compatibility of the digital metric camera and non-metric camera for the purpose of mapping meandering flume, using close range photogrammetric technique and further, to determine the accuracy that could be achieved using such a technique. The meandering flume provides an opportunity to conduct an experimental study in a controlled environment. In this study, the digital images of the whole meandering flume were acquired using a compact digital camera - Nikon Coolpix S560, a Single Lens Reflex (SLR) Nikon D60 and also a metric digital camera Rollei D30. A series of digital images were acquired to cover the whole meandering flume. Secondary data of ground control points (GCP) and check points (CP), established using the Total Station technique, was used. The digital camera was calibrated and the recovered camera calibration parameters were then used in the processing of digital images. In processing the digital images, digital photogrammetric software was used for processes such as aerial triangulation, stereo compilation, generation of digital elevation model (DEM) and generation of orthophoto. The whole process was successfully performed and the output produced in the form of orthophoto. The research output is then evaluated for planimetry and vertical accuracy using root mean square error (RMSE). Based on the analysis, sub-meter accuracy is obtained. It can be concluded that the differences between the different types of digital camera are small . As a conclusion, this study proves that close range photogrammetry technique can be used for mapping meandering flume using both the metric digital camera and non-metric digital camera.
This study was performed to evaluate the antifungal activities of methanolic fractions from the stem bark of Entada spiralis Ridl. against human dermatophytes and yeast-like fungus in vitro. Three types of human dermatophyte, Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102 and Trichophyton tonsurans ATCC 28942, and one yeast-like fungus, Candida glabrata ATCC 66032, were tested against the methanolic fractions labelled FA1, FA4 and FA5. T. mentagrophytes, T. tonsuran and M. gypseum were susceptible to all tested fractions in a concentration-dependent manner whereas C. glabrata was resistant. Fraction FA1 at a concentration of 400 mg/mL was found to exhibit the highest antifungal activity with the inhibition zone diameter of 22 mm (T. mentagrophytes). This fraction showed a minimum inhibitory concentration MIC of 0.097 mg/mL while the MIC value for the fraction FA4 and fraction FA5 was 3.12 mg/ml and 1.56 mg/ml respectively. Agar overlay bioautography assay results showed that most of the bioactive compounds were found in the fraction FA1. Based on these findings, it can be concluded that the stem bark extracts of E. spiralis can be a future source of potent natural antimicrobial drugs for superficial skin diseases.
The computer, together with Lab View software, can be used as an automatic data acquisition system. This project deals with the development of a computer interfacing technique for the study of Hall Effect and converting the existing automation system into a Web-based automation system. The drive board RS 217-3611 with PCI 6025E card and stepper motor RS191-8340 with a resolution of 0.1mm, was used to move a pair of permanent magnets backward and forward against the sample. The General Interface Bus (GPIB) card interfaces, together with digital nano voltmeter and Tesla meter using serial port RS232 interface, are used for measuring the potential difference and magnetic field strength respectively. Hall Effect measurement on copper (Cu) and tantalum (Ta) showed negative and positive sign Hall coefficient. Therefore, the system has electron and hole charge carriers respectively at room temperature. The parameters such as drift velocity, conductivity, mobility, Hall Coefficient and charge carrier concentration were also automatically displayed on the front panel of Lab View programming and compared with standard value. The Web-based automation system can be remotely controlled and monitored by users in remote locations using only their web browsers. In addition, video conferencing through Net Meeting has been used to provide audio and video feedback to the client.
MeSH terms: Automation; Computers; Copper; Electrons; Information Systems; Software; Tantalum; Temperature; Internet; Magnets; Magnetic Fields; Web Browser
An audit of Diabetes Control and Management-Diabetes Registry Malaysia (ADCM-DRM) was started to monitor the provision of diabetes care in the country. A total of 20,646 patients were registered in the registry until 31st December 2008. This report set out to determine the Type 2 diabetes controls and treatment profiles of these cohorts of patients. This was a registry-based observational study conducted from May to December, 2008. An online standard case record form was available for site data providers to register their diabetic patients aged 18 years old and above annually. Demographic data, diabetes duration, treatment modalities, as well as various risk factors and diabetes complications were reported. Data were analyzed using Data Analysis and Statistical Software (Stata) version 9. A total of 81 centres, 6 of which were hospitals, participated in this registry until 31st December 2008, contributing a total of 20646 patients. A majority of them (99.2%) had Type 2 diabetes mellitus. The mean HbA1c was 8.0% (SD 2.10), with 30.1% and 17.9% of the patients who attained HbA1c < 7% and HbA1c < 6.5%, respectively. Metformin was prescribed more than sulfonylurea while only 11% had insulin. A review of the diabetic care policy and strategies in the primary health care clinics is needed to implement a more effective treatment of diabetes in this country.
MeSH terms: Adult; Ambulatory Care Facilities; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Female; Hemoglobin A, Glycosylated; Humans; Insulin; Malaysia; Male; Metformin; Primary Health Care; Registries; Risk Factors; Sulfonylurea Compounds; Treatment Outcome; Diabetes Complications
Autocorrelation problem causes unduly effects on the variance of Ordinary Least Squares (OLS) estimates. Hence, it is very essential to detect the autocorrelation problem so that appropriate remedial measures can be taken. The Breusch-Godfrey (BG) test is the most popular and commonly used test for the detection of autocorrelation. Since this test is based on the OLS estimates, which are not robust, it is easily affected by outliers. In this paper, we propose a robust Breusch-Godfrey (MBG) test which is not easily affected by outliers. The results of the study indicate that the MBG test is more powerful than the BG test in the detection of autocorrelation problem.
MeSH terms: Algorithms; Paper; Social Distance; Least-Squares Analysis
Liberica coffee is the most important coffee species grown in Malaysia. However, there is little or no research at all conducted on coffee berries and green coffee beans since the plant itself is a low income crop in Malaysia. Therefore, research on Malaysian Liberica coffee can help to increase the knowledge of coffee farmers and coffee manufacturers in the processing and handling of the coffee. Physical properties of Liberica coffee berries and beans were investigated the current study. The properties investigated include the size, mass, density, coefficient of friction, angle of repose, fracture force and colour. In comparison to Arabica and Robusta coffee, Liberica coffee has the biggest size, mass, true density and fracture force values but were lower in bulk density in both berries and beans. The Liberica berries and beans were found to be orange-ish and yellowish colour respectively. Angle of repose was low and approximately similar in berries and beans while jute fibre gave the highest friction to both Liberica berries and beans.
Land development, especially construction works, increase storm water volumes and pollution loads into rivers and lakes. The temporary drainage system at construction sites, particularly during the construction stage discharges a large amount of pollutants that can damage the aquatic system of the receiving water bodies. The potential of vegetative swale to alleviate this problem was evaluated. The size of the constructed vegetative swale was 7cm deep, 400cm long and 15cm wide at the bottom, and 17cm wide at the top. The experiment was conducted batch wise by filling the storage tank with the run-off water from the construction site. The water was allowed to flow through a pipe into the retention basin to maintain uniform flow before it entered the swale. The study showed that the run-off infiltrated through the soil at a rate of 489.6 mm/hr. Samples of surface run-off and infiltration water were collected at the end and the bottom of the swale. The results indicate that chemical oxygen demand (COD), total suspended solid (TSS), turbidity, iron and zinc were reduced by 85.4%, 80.8%, 36.4%, 52.8% and 96.0%, respectively, by surface flow and 91.1%, 98.8%, 58.2% 55.5% and 98.1%, respectively, by infiltration. Removal of nitrate and phosphorus by the planted vegetation was 69.4% and 21.1%, respectively, by infiltration. However, nutrient removal by surface flow was negligible. In conclusion, the vegetative swale was able to improve the water quality of the storm water run-off from the construction site from Class V to Class III, according to the Interim National Water Quality Standards for Malaysia.
This paper describes a study on the design, fabrication and testing of a prototype digging device for sweet potato tubers in bris soil. The soil texture was sandy soil (fine sand 94.53%), with mean moisture content of 9.16% and mean bulk density of 1.44 g-cm-3. The soil was prepared in a soil bin. Three types of soil digging tools were designed and fabricated to determine the optimum draft force. These were Flat or plane, V-shaped and Hoe type blades. Plane and V-shaped blades were 30 cm long, and 13 cm wide, while the Hoe type had three rods, 25 mm in diameter, 30 cm long and 6.5 cm wide with sharp cutting edge. The digging tools were tested in a soil bin filled with bris soil to determine the optimum draft force and area of soil disturbance. The results were analysed using statistical analysis of variance (ANOVA). Comparison between all blade types and blade depths to measured draft force and the area of soil disturbed showed that the highest draft of 0.54 kN-m-2 was caused by a flat or plane blade at the optimum depth of 20 cm when the area of soil disturbed was 0.180 m2 . The V-shaped blade had the mean draft of 0.51 kN-m-2, with area of soil disturbance of 0.185 m2 . Thebest choice was V-shaped blade with a rake angle of 30o at 20 cm. depth. The selected blade was fixed onto the sweet potato harvester and tested on bris soil planted with sweet potato of Telong and VitAto varieties. The harvesting efficiency of the machine in bris soil was 93.64% and 90.49% for Telong (Plot A) and VitAto (Plot B) varieties, respectively. The average ground speed and turning time during operation for plots A and B was 0.56 km-hr-1 and 102.7 s and 0.99 km-hr-1 and 81.22 s, respectively. The harvesting efficiencies for both plots showed no significant difference. The total productive time (harvesting time) and unproductive time (turning time) in plot A, at a tractor speed of 0.56 km.hr-1, was 14.8 hours for harvesting a hectare of sweet potato ( 0.068 ha.hr-1). In plot B, the total time for harvesting a hectare of sweet potato was 8.35 hours (0.12 ha.hr-1) at a tractor speed of 0.99 km.hr-1. The average harvesting time for both plots was 11.47 hr.ha-1. The average field work rate was 0.087 ha.hr-1 or 34 man-hr.ha-1 compared to manual harvesting of 150 man-hrs.ha-1.
In this work, 10 mol% yttrium-doped ceria powders, Ce0.9Y0.1O1.95, were synthesised using a new mechanical technique, mechanochemical reaction, in which both impact action and shearing forces were applied for efficient fine grinding, subsequently leading to higher homogeneity of the resultant powders. Ce0.9Y0.1O1.95 prepared using this new technique was systematically compared with a sample of the same prepared using conventional solid-state methodology. X-ray diffraction analysis showed all prepared samples were single phase with a cubic fluorite structure. Generally, Y2O3-doped CeO2 electrolytes prepared by mechanochemical reactions were stable at a lower temperature (1100 °C) compared with a sample of the same synthesised using the conventional solid-state method. Characterisations using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) showed no thermal changes and phase transitions, indicating all materials were thermally stable. The electrical properties of the samples investigated by AC impedance spectroscopy in the temperature range 200–800 ˚C are presented and discussed. Scanning electron microscopy (SEM) was used to study the morphology of the materials. Fine-grained powders with uniform grain-size distribution were obtained from the mechanochemical reaction.
Linear array of permutations is hard to be factorised. However, by using a starter set, the process of listing the permutations becomes easy. Once the starter sets are obtained, the circular and reverse of circular operations are easily employed to produce distinct permutations from each starter set. However, a problem arises when the equivalence starter sets generate similar permutations and, therefore, willneed to be discarded. In this paper, a new recursive strategy is proposed to generate starter sets that will not incur equivalence by circular operation. Computational advantages are presented that compare the results obtained by the new algorithm with those obtained using two other existing methods. The result indicates that the new algorithm is faster than the other two in time execution.
The search for a high temperature lead-free solder replacement for high temperature leaded solder eutectic alloy has been an evolving process as the threat of a regional lead ban became a reality in July 2006. The advantages and disadvantages of lead-free solder in terms of manufacturing, performance and reliability have been increasingly revealed through companies’ Research and Development (R&D), industrial consortia and university researchers. Materials and component design are the primary criteria to focus on the development for the current generation of high temperature lead-free solder alloys. According to the current status of high temperature lead free soldering, there are many unsolved technical problems such as explanation on the lift-off phenomenon, establishment of high temperature lead-free plating technology, construction of a database of physical properties (solder, parts, PCBs), standardization of high temperature solder materials evaluation technology, and most importantly, the best candidate material for high temperature solder. Clearly, high temperature soldering is one of the unsolved problems of the century in lead-free soldering. Moreover, most of the questions still remain unanswered by researchers. This paper reviews research conducted on the Bi-Ag solder alloy, which is one of the candidate alloys that has been proposed as an alternative for high temperature lead-free solder.
MeSH terms: Alloys; Hot Temperature; Polychlorinated Biphenyls; Research; Research Personnel; Temperature; Universities; Reproducibility of Results; Physical Processes
A polystyrene (PS)-anchored Pd(II) metal complex was synthesized on cross-linked polymer by heating a mixture of chlorometylated polystyrene with phenyldithiocarbazate and carbon disulfide in the presence of potassium hydroxide (KOH) in dimethylformamide (DMF). The reaction mixture was heated at 80 °C to form the corresponding phenyldithiocarbazate-functionalized polymer. Then, it was treated with bis(benzonitrile)palladium(II) chloride. The properties of dark colored polymer, impregnated with the metal complex was then characterized by various spectroscopic technique such as Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), CHNS elemental analysis, BET surface area, X-ray Diffraction (XRD), Thermogravimetric (TGA) and Inductively Coupled Plasma-Optical Emission (ICP-OES) spectroscopy.
Natural fiber is incompatible with hydrophobic polymer due to its hydrophilic nature. Therefore, surface modification of fiber is needed to impart compatibility. In this work,superheated steam (SHS)-alkali was introduced as novel surface treatment method to modify oil palm mesocarp fiber (OPMF) for fabrication of biocomposites. The OPMF was first pre-treated with SHS and subsequently treated with varying NaOH concentration (1, 2, 3, 4 and 5%) and soaking time (1, 2, 3 and 4h) at room temperature. The biocomposites were then fabricated by melt blending of 70 wt% SHS-alkali treated-OPMFs and 30 wt% poly(butylene succinate) in a Brabender internal mixer followed by hot-pressed moulding. The combination treatment resulted in fiber with rough surface as well as led to the exposure ofmicrofibers. The tensile test result showed that fiber treated at 2% NaOH solution and 3h soaking time produced biocomposite with highest improvement in tensile strength (69%) and elongation at break (36%) in comparison to that of untreated OPMF. The scanning electron micrographs of tensile fracture surfaces of biocomposite provide evident for improved adhesion between fiber and polymer after thetreatments.This work demonstrated that combination treatments of SHS and NaOH could be a promising way to modify OPMF for fabrication of biocomposite.
Poly(lactic acid) (PLA)-based nanocomposites filled with graphene nanoplatelets (xGnP) that contains epoxidized palm oil (EPO) as plasticizer were prepared by melt blending method. PLA was first plasticized by EPO to improve its flexibility and thereby overcome its problem of brittleness. Then, xGnP was incoporated into plasticized PLA to enhance its mechanical properties. Plasticized and nanofilled PLA nanocomposites (PLA/EPO/xGnP) showed improvement in the elongation at break by 3322% and 61% compared to pristine PLA and PLA/EPO, respectively. The use of EPO and xGnP increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The nanocomposites also resulted in an increase of up to 26.5% in the tensile strength compared with PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO/xGnP nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. Plasticized PLA reinforced with xGnP showed that increasing the xGnP content triggers a substantial increase in thermal stability. Crystallinity of the nanocomposites as well as cold crystallization and melting temperature did not show any significant changes upon addition of xGnP. However, there was a significant decrease of glass transition temperature up to 0.3wt% of xGnP incorporation. The TEM micrograph of PLA/EPO/xGnP shows that the xGnP was uniformly dispersed in the PLA matrix and no obvious aggregation was observed.
The performance and operational characteristics of a laboratory scale modified anaerobic hybrid baffled (MAHB) reactor were studied using recycled paper mill effluent (RPME) wastewater. MAHB reactor was continuously operated at 35°C for 90 days with organic loading rate (OLR) increased from 0.14 to 0.57 g/L/dy. This present study demonstrated that the system was proficient in treating low strength RPME wastewater. Highest carbon oxygen demand (COD) removal were recorded up to 97% for an organic loading of 0.57 g /L/dy while effluent alkalinity assured that the system pH in the MAHB compartments were of great advantages to acidogens and methanogens respectively. Methane and biogas production rate shows increment as the load increases, which evidently indicated that the most significant approach to enhance gas production rates involves the increment of incoming substrate moderately. Variations of biogas and volatile fatty acid (VFA) in different compartments of MAHB reactor indicated the chronological degradation of substrate. The compartmental structure of MAHB reactor provided its strong ability to resist shock loads. From this present study, it shows the potential usage of MAHB reactor broadens the usage of multi-phase anaerobic technology for industrial wastewater treatment.
This research investigates and analyzes wear properties of 316 stainless steel before and after applying paste boronizing process and to investigate the effect of shot blasting process in enhancing boron dispersion into the steel. In order to enhance the boron dispersion into 316 stainless steel, surface deformation method by shot blasting process was deployed. Boronizing treatment was conducted using paste medium for 8 hours under two different temperatures which were 8500 C and 9500 C. Wear behaviour was evaluated using pin-on-disc test for abrasion properties. The analysis on microstructure, X-ray Diffraction (XRD) and density were also carried out before and after applying boronizing treatment. Boronizing process that had been carried out on 316 stainless steel increases the wear resistance of the steel compared to the unboronized 316 stainless steel. The effect of boronizing treatment together with the shot blasting process give a greater impact in increasing the wear resistance of 316 stainless steel. This is mainly because shot blasted samples initiated surface deformation that helped more boron dispersion due to dislocation of atom on the deformed surface. Increasing the boronizing temperature also increases the wear resistance of 316 stainless steel. In industrial application, the usage of the components that have been fabricated using the improved 316 stainless steel can be maximized because repair and replacement of the components can be reduced as a result of improved wear resistance of the 316 stainless steel.
Protease was extracted from two maturity stages of noni fruits (Morinda citrifolia L.), unripe (stage 1) and ripe (stage 5). The crude extract was partially purified by acetone precipitation method followed by dialysis, gel filtration chromatography and freeze drying. Protein concentrations, proteolytic activity, molecular weight distribution, pH stability, temperature stability and storage efficiency of the resulting protease were evaluated. The unripe and ripe noni fruit contains 0.65 and 0.35% protein, respectively. Molecular weight of the proteases from both stages ranged approximately between 3 to 28 kDa based on the SDS-PAGE results. The optimum activity were at pH 7s and 6, temperatures of 40 and 50°C, respectively for proteases obtained from the unripe and ripe fruit. Analysis from the freeze dried protease indicated that protease from ripe noni fruits had higher protein concentration and specific activity compared to those from unripe fruit. However, it is more sensitive to pH and temperature and less stable during storage as it shows lower proteolytic activity compared to protease from unripe fruit. Based on its high proteolytic activity reaching up to 70.31 U/mg and storage stability (30% lost of activity), noni fruit could be an alternative source of plant protease.